Abstract

The flow and heat transfer characteristics of nanofluids in a square cavity were simulated using single-phase and mixed-phase flow models, and the simulation results were compared with the corresponding experimental values. The effects of different prediction models for the thermal properties of nanofluids, Grashof number, and volume fraction on the Nusselt number were analyzed. The velocity and temperature distributions of the nanofluid and de-ionized water in the square cavity were compared, and the effects of the temperature and flow fields on the enhanced heat transfer were analyzed according to the field synergy theory. The results show that for the numerical simulation of convective heat transfer in water, both the single-phase flow models and multiphase flow mixing models had high prediction accuracy. For nanofluids, single-phase flow did not reflect the heat transfer characteristics well, and the simulation results of the single-phase flow model relied more strongly on a highly accurate prediction model for the physical parameters. The multiphase flow mixing model could better reflect the natural convective heat transfer properties of the nanofluids in a square cavity. The nanofluid could significantly improve the flow state in the square cavity, thereby facilitating enhanced convective heat transfer. When the concentration is 2% (Grashof number is 1 × 106), the average Nusselt number of the nanofluid is increased by 19.7% compared with the base fluid.

References

1.
Ali
,
N.
,
Bahman
,
A. M.
,
Aljuwayhel
,
N. F.
,
Ebrahim
,
S. A.
,
Mukherjee
,
S.
, and
Alsayegh
,
A.
,
2021
, “
Carbon-Based Nanofluids and Their Advances Towards Heat Transfer Applications—A Review
,”
Nanomaterials
,
11
(
6
), pp.
1628
1706
.10.3390/nano11061628
2.
Choi
,
S. U.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
1995 International Mechanical Engineering Congress and Exhibition
, San Francisco, CA, Nov. 12-17, Paper No. ANL/MSD/CP-84938.https://www.researchgate.net/publication/236353373_Enhancing_thermal_conductivity_of_fluids_with_nanoparticles
3.
Syam Sundar
,
L.
,
Misganaw
,
A. H.
,
Singh
,
M. K.
,
Sousa
,
A.
, and
Ali
,
H. M.
,
2021
, “
Efficiency Analysis of Thermosyphon Solar Flat Plate Collector With Low Mass Concentrations of ND–Co3O4 Hybrid Nanofluids: An Experimental Study
,”
J. Therm. Anal. Calorim.
,
143
(
2
), pp.
959
972
.10.1007/s10973-020-10176-1
4.
Ji
,
W.
,
Yang
,
L.
,
Chen
,
Z.
,
Mao
,
M.
, and
Huang
,
J. N.
,
2021
, “
Experimental Studies and ANN Predictions on the Thermal Properties of TiO2-Ag Hybrid Nanofluids: Consideration of Temperature, Particle Loading, Ultrasonication and Storage Time
,”
Powder Technol.
,
388
, pp.
212
232
.10.1016/j.powtec.2021.04.069
5.
Chen
,
J.
,
Zhao
,
C. Y.
, and
Wang
,
B. X.
,
2020
, “
Effect of Nanoparticle Aggregation on the Thermal Radiation Properties of Nanofluids: An Experimental and Theoretical Study
,”
Int. J. Heat Mass Transfer
,
154
, p.
119690
.10.1016/j.ijheatmasstransfer.2020.119690
6.
Kamel
,
M. S.
, and
Lezsovits
,
F.
,
2020
, “
Enhancement of Pool Boiling Heat Transfer Performance Using Dilute Cerium Oxide/Water Nanofluid: An Experimental Investigation
,”
Int. J. Heat Mass Transfer
,
114
, p.
104587
.10.1016/j.icheatmasstransfer.2020.104587
7.
Dong
,
J. T.
,
Zheng
,
Q.
,
Xiong
,
C. H.
,
Sun
,
E.
, and
Chen
,
J. M.
,
2022
, “
Experimental Investigation and Application of Stability and Thermal Characteristics of SiO2-Ethylene-Glycol/Water Nanofluids
,”
Int. J. Therm. Sci.
,
176
, p.
107533
.10.1016/j.ijthermalsci.2022.107533
8.
Dalvi
,
S.
,
Karaliolios
,
E. C. J.
,
van der Meer
,
T. H.
, and
Shahi
,
M.
,
2020
, “
Thermo-Magnetic Convection in a Circular Annulus Filled With Magnetocaloric Nanofluid
,”
Int. J. Therm. Sci.
,
116
, p.
104654
.10.1016/j.icheatmasstransfer.2020.104654
9.
Demirkır
,
Ç.
, and
Ertürk
,
H.
,
2021
, “
Convective Heat Transfer and Pressure Drop Characteristics of Graphene-Water Nanofluids in Transitional Flow
,”
Int. Commun. Heat Mass Transfer
,
121
, p.
105092
.10.1016/j.icheatmasstransfer.2020.105092
10.
Ba
,
T. L.
,
Bohus
,
M.
,
Lukács
,
I. E.
,
Wongwises
,
S.
,
Gróf
,
G.
,
Hernadi
,
K.
, and
Szilágyi
,
I. M.
,
2021
, “
Comparative Study of Carbon Nanosphere and Carbon Nanopowder on Viscosity and Thermal Conductivity of Nanofluids
,”
Nanomaterials
,
11
(
3
), pp.
608
625
.10.3390/nano11030608
11.
Main
,
K. L.
,
Eberl
,
B. K.
,
McDaniel
,
D.
,
Tikadar
,
A.
,
Paul
,
T. C.
, and
Khan
,
J. A.
,
2021
, “
Nanoparticles Size Effect on Thermophysical Properties of Ionic Liquids Based Nanofluids
,”
J. Mol. Liq.
,
343
, p.
117609
.10.1016/j.molliq.2021.117609
12.
Gupta
,
V.
,
Sharma
,
S.
,
Magotra
,
U.
, and
Sharma
,
M.
,
2021
, “
Concentration and Temperature Dependent Effects on Acoustical Parameters and Thermal Conductivity in Cobalt Oxide Nanofluids
,”
Prot. Met. Phys. Chem. Surf.
,
57
(
6
), pp.
1198
1205
.10.1134/S2070205121060095
13.
Mane
,
N. S.
, and
Hemadri
,
V.
,
2022
, “
Experimental Investigation of Stability, Properties and Thermo-Rheological Behaviour of Water-Based Hybrid CuO and Fe3O4 Nanofluids
,”
Int. J. Thermophys.
,
43
(
1
), p.
7
.10.1007/s10765-021-02938-2
14.
Bahiraei
,
M.
,
Naseri
,
M.
, and
Monavari
,
A.
,
2021
, “
A CFD Study on Thermohydraulic Characteristics of a Nanofluid in a Shell-and-Tube Heat Exchanger Fitted With New Unilateral Ladder Type Helical Baffles
,”
Int. Commun. Heat Mass Transfer
,
124
, p.
105248
.10.1016/j.icheatmasstransfer.2021.105248
15.
Ambreen
,
T.
,
Saleem
,
A.
, and
Park
,
C. W.
,
2021
, “
Homogeneous and Multiphase Analysis of Nanofluids Containing Nonspherical MWCNT and GNP Nanoparticles Considering the Influence of Interfacial Layering
,”
Nanomaterials
,
11
(
2
), pp.
277
299
.10.3390/nano11020277
16.
Li
,
Y.
,
Zhai
,
Y.
,
Ma
,
M.
,
Xuan
,
Z.
, and
Wang
,
H.
,
2021
, “
Using Molecular Dynamics Simulations to Investigate the Effect of the Interfacial Nanolayer Structure on Enhancing the Viscosity and Thermal Conductivity of Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
122
, p.
105181
.10.1016/j.icheatmasstransfer.2021.105181
17.
Elsaidy
,
A.
,
Vallejo
,
J. P.
,
Salgueiriño
,
V.
, and
Lugo
,
L.
,
2021
, “
Tuning the Thermal Properties of Aqueous Nanofluids by Taking Advantage of Size-Customized Clusters of Iron Oxide Nanoparticles
,”
J. Mol. Liq.
,
344
, p.
117727
.10.1016/j.molliq.2021.117727
18.
Esfe
,
M. H.
,
Alirezaie
,
A.
, and
Toghraie
,
D.
,
2021
, “
Thermal Conductivity of Ethylene Glycol Based Nanofluids Containing Hybrid Nanoparticles of SWCNT and Fe3O4 and Its Price-Performance Analysis for Energy Management
,”
J. Mater. Res. Technol.
,
14
, pp.
1754
1760
.10.1016/j.jmrt.2021.07.033
19.
Giwa
,
S. O.
,
Sharifpur
,
M.
,
Ahmadi
,
M. H.
, and
Meyer
,
J. P.
,
2021
, “
A Review of Magnetic Field Influence on Natural Convection Heat Transfer Performance of Nanofluids in Square Cavities
,”
J. Therm. Anal. Calorim.
,
145
(
5
), pp.
2581
2623
.10.1007/s10973-020-09832-3
20.
Yan
,
S. R.
,
Pordanjani
,
A. H.
,
Aghakhani
,
S.
,
Goldanlou
,
A. S.
, and
Afrand
,
M.
,
2020
, “
Managment of Natural Convection of Nanofluids Inside a Square Enclosure by Different Nano Powder Shapes in Presence of Fins With Different Shapes and Magnetic Field Effect
,”
Adv. Powder Technol.
,
31
(
7
), pp.
2759
2777
.10.1016/j.apt.2020.05.009
21.
Jelodari
,
I.
, and
Nikseresht
,
A. H.
,
2018
, “
Effects of Lorentz Force and Induced Electrical Field on the Thermal Performance of a Magnetic Nanofluid-Filled Cubic Cavity
,”
J. Mol. Liq.
,
252
, pp.
296
310
.10.1016/j.molliq.2017.12.143
22.
Giwa
,
S. O.
,
Sharifpur
,
M.
, and
Meyer
,
J. P.
,
2020
, “
Experimental Study of Thermo-Convection Performance of Hybrid Nanofluids of Al2O3-MWCNT/Water in a Differentially Heated Square Cavity
,”
Int. J. Heat Mass Transfer
,
148
, p.
119072
.10.1016/j.ijheatmasstransfer.2019.119072
23.
Solomon
,
A. B.
,
van Rooyen
,
J.
,
Rencken
,
M.
,
Sharifpur
,
M.
, and
Meyer
,
J. P.
,
2017
, “
Experimental Study on the Influence of the Aspect Ratio of Square Cavity on Natural Convection Heat Transfer With Al2O3/Water Nanofluids
,”
Int. J. Heat Mass Transfer
,
88
, pp.
254
261
.10.1016/j.icheatmasstransfer.2017.09.007
24.
Cho
,
C. C.
,
2018
, “
Heat Transfer and Entropy Generation of Mixed Convection Flow in Cu-Water Nanofluid-Filled Lid-Driven Cavity With Wavy Surface
,”
Int. J. Heat Mass Transfer
,
119
, pp.
163
174
.10.1016/j.ijheatmasstransfer.2017.11.090
25.
Salman
,
B. H.
,
Mohammed
,
H. A.
, and
Kherbeet
,
A. S.
,
2014
, “
Numerical and Experimental Investigation of Heat Transfer Enhancement in a Microtube Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
59
, pp.
88
100
.10.1016/j.icheatmasstransfer.2014.10.017
26.
Al Kalbani
,
K. S.
,
Rahman
,
M. M.
, and
Saghir
,
M. Z.
,
2020
, “
Entropy Generation in Hydromagnetic Nanofluids Flow Inside a Tilted Square Enclosure Under Local Thermal Nonequilibrium Condition
,”
Int. J. Thermofluids
,
5–6
, p.
100031
.10.1016/j.ijft.2020.100031
27.
Wang
,
B.
,
Shih
,
T. M.
, and
Huang
,
J.
,
2020
, “
Enhancing and Attenuating Heat Transfer Characteristics for Circulating Flows of Nanofluids Within Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
,
117
, p.
104800
.10.1016/j.icheatmasstransfer.2020.104800
28.
Shulepova
,
E. V.
,
Sheremet
,
M. A.
,
Oztop
,
H. F.
, and
Abu-Hamdeh
,
N.
,
2020
, “
Mixed Convection of Al2O3–H2O Nanoliquid in a Square Chamber With Complicated Fin
,”
Int. J. Mech. Sci.
,
165
, p.
105192
.10.1016/j.ijmecsci.2019.105192
29.
Lotfi
,
R.
,
Saboohi
,
Y.
, and
Rashidi
,
A. M.
,
2010
, “
Numerical Study of Forced Convective Heat Transfer of Nanofluids: Comparison of Different Approaches
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
74
78
.10.1016/j.icheatmasstransfer.2009.07.013
30.
Liao
,
C. C.
,
2017
, “
Heat Transfer Transitions of Natural Convection Flows in a Differentially Heated Square Enclosure Filled With Nanofluids
,”
Int. J. Heat Mass Transfer
,
115
(Part B), pp.
625
634
.10.1016/j.ijheatmasstransfer.2017.08.045
31.
Corcione
,
M.
,
Habib
,
E.
,
Quintino
,
A.
,
Ricci
,
E.
, and
Spena
,
V. A.
,
2020
, “
Buoyancy-Induced Convection From a Pair of Heated and Cooled Horizontal Circular Cylinders Inside an Adiabatic Tilted Cavity Filled With Alumina/Water Nanofluids
,”
Int. J. Numer. Method. H.
,
30
(
6
), pp.
3163
3181
.10.1108/HFF-01-2019-0023
32.
Borrelli
,
A.
,
Giantesio
,
G.
, and
Cristina
,
P. M.
,
2020
, “
Mixed Magnetoconvection of Nanofluids in a Long Vertical Porous Channel
,”
ASME. J. Heat Transfer-Trans. ASME
,
142
(3), p. 032502.10.1115/1.4045670
33.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1345
1353
.10.1016/j.ijthermalsci.2010.02.013
34.
Chrystal
,
G.
,
1882
, “
A Treatise on Electricity and Magnetism an Elementary Treatise on Electricity
,”
Nature
,
25
(
637
), pp.
237
240
.10.1038/025237a0
35.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
(
1/2
), pp.
167
171
.10.1023/A:1024438603801
36.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4675
4682
.10.1016/j.ijheatmasstransfer.2009.06.027
37.
Topping
,
J.
,
1956
, “
Investigations on the Theory of the Brownian Movement
,”
Phys. Bull.
,
7
(
10
), pp.
281
281
.10.1088/0031-9112/7/10/012
38.
Cheng
,
N. S.
, and
Law
,
A. W. K.
,
2003
, “
Exponential Formula for Computing Effective Viscosity
,”
Powder Technol.
,
129
(
1–3
), pp.
156
160
.10.1016/S0032-5910(02)00274-7
39.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energ. Convers. Manage.
,
52
(
1
), pp.
789
793
.10.1016/j.enconman.2010.06.072
40.
Yang
,
S. M.
, and
Zhang
,
Z. Z.
,
1994
, “
An Experimental Study of Natural Convection Heat Transfer From a Horizontal Cylinder in High Rayleigh Number Laminar and Turbulent Regions
,”
Heat Transfer 1994: Proceedings of the Tenth International Heat Transfer Conference
,
G. F.
Hewitt
, ed.,
Hemsphere Publishing Corporation
,
Brighton, UK
, pp.
185
189
.
41.
Yang
,
S. M.
,
2001
, “
Improvement of the Basic Correlating Equations and Transition Criteria of Natural Convection Heat Transfer
,”
Heat Transfer
,
30
(
4
), pp.
293
300
.10.1002/htj.1018
42.
He
,
Y. L.
, and
Tao
,
W. Q.
,
2014
, “
Convective Heat Transfer Enhancement: Mechanisms, Techniques, and Performance Evaluation
,”
Adv. Heat Transfer
,
46
, pp.
87
186
.10.1016/bs.aiht.2014.09.001
You do not currently have access to this content.