Abstract

Stretching flow problems have several real-world applications in engineering, biological, and industrial fields. The real-world applications of the stretching sheet flow problems are continuous cooling of fiber, manufacturing of rubber and plastics sheets, metal-working processes, crystal growth processes, drawing of the filaments through a quiescent fluid, and consideration of the liquid's films and many others. The present problem focuses on the study of heat and mass transmission phenomena of the magnetohydrodynamics flow of three-dimensional micropolar liquid over a bidirectional stretching surface. In the current analysis, the heat and mass transport mechanism are demonstrated by incorporating the Cattaneo–Christov heat and mass flux model. The micro-organisms are only used to stabilize suspended nanoparticles via bioconvection, which is caused by the combination of magnetic field and a buoyancy force. The current model is demonstrated in the system of higher order partial differential equations (PDEs), which are changed into nonlinear ordinary differential equations (ODEs) by the exploitation of appropriate similarity variables. For the analytical solution, the resulting nonlinear ODEs are simulated by employing the homotopy analysis scheme. The physical significance of velocities, microrotation, temperature, concentration, and micro-organism profiles of the fluid via various embedded parameters are calculated and discussed in a graphical form. The Nusselt number, Sherwood number and micro-organism density number are calculated via tables. Some major findings of the current problem are that the Nusselt number is weakened for the boosted estimation of radiation and thermal relaxation time parameter. The bioconvection Lewis number raised the micro-organism density number. The nanofluid microrotation profile is boosted with the augmentation of the microrotation parameter. The temperature of nanoliquid is lower for thermal relaxation time parameter and nanofluid concentration is lower the for solutal relaxation time parameter.

References

1.
Abou-zeid
,
M. Y.
, and
Ouaf
,
M. E.
,
2021
, “
Hall Currents Effect on Squeezing Flow of Non-Newtonian Nanofluid Through a Porous Medium Between Two Parallel Plates
,”
Case Stud. Therm. Eng
,
28
, p.
101362
.10.1016/j.csite.2021.101362
2.
Mallawi
,
F. O. M.
,
Bhuvaneswari
,
M.
,
Sivasankaran
,
S.
, and
Eswaramoorthi
,
S.
,
2021
, “
Impact of Double-Stratification on Convective Flow of a Non-Newtonian Liquid in a Riga Plate With Cattaneo–Christov Double-Flux and Thermal Radiation
,”
Ain Shams Eng. J.
,
12
(
1
), pp.
969
981
.10.1016/j.asej.2020.04.010
3.
Machireddy
,
G. R.
,
Praveena
,
M. M.
,
Rudraswamy
,
N. G.
, and
Kumar
,
G. K.
,
2021
, “
Impact of Cattaneo–Christov Heat Flux on Hydromagnetic Flow of Non-Newtonian Fluids Filled With Darcy–Forchheimer Porous Medium
,”
Waves Random Complex Media
, epub, pp.
1
18
.10.1080/17455030.2021.1957178
4.
Khan
,
A. A.
,
Abbas
,
N.
,
Nadeem
,
S.
,
Shi
,
Q. H.
,
Malik
,
M. Y.
,
Ashraf
,
M.
, and
Hussain
,
S.
,
2021
, “
Non-Newtonian Based Micropolar Fluid Flow Over Nonlinear Starching Cylinder Under Soret and Dufour Numbers Effects
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105571
.10.1016/j.icheatmasstransfer.2021.105571
5.
Waqas
,
H.
,
Khan
,
S. A.
,
Alghamdi
,
M.
,
Alqarni
,
M. S.
, and
Muhammad
,
T.
,
2021
, “
Numerical Simulation for Bio-Convection Flow of Magnetized Non-Newtonian Nanofluid Due to Stretching Cylinder/Plate With Swimming Motile Microorganisms
,”
Eur. Phys. J. Spec. Top.
, 230(5), pp.
1
18
.10.1140/epjs/s11734-021-00041-z
6.
Ramzan
,
M.
,
Khan
,
N. S.
, and
Kumam
,
P.
,
2021
, “
Mechanical Analysis of Non-Newtonian Nanofluid Past a Thin Needle With Dipole Effect and Entropic Characteristic
,”
Sci. Rep
,
11
(
1
), pp.
1
25
.10.1038/s41598-021-98128-z
7.
Alaidrous
,
A. A.
, and
Eid
,
M. R.
,
2020
, “
3-D Electromagnetic Radiative Non-Newtonian Nanofluid Flow With Joule Heating and Higher-Order Reactions in Porous Materials
,”
Sci. Rep.
,
10
(
1
), pp.
1
19
.10.1038/s41598-020-71543-4
8.
Arif
,
M.
,
Kumam
,
P.
,
Kumam
,
W.
,
Khan
,
I.
, and
Ramzan
,
M.
,
2021
, “
A Fractional Model of Casson Fluid With Ramped Wall Temperature: Engineering Applications of Engine Oil
,”
Comput. Math. Methods
,
3
(
6
), p.
e1162
.10.1002/cmm4.1162
9.
Ahmed
,
K.
,
Akbar
,
T.
,
Muhammad
,
T.
, and
Alghamdi
,
M.
,
2021
, “
Heat Transfer Characteristics of MHD Flow of Williamson Nanofluid Over an Exponential Permeable Stretching Curved Surface With Variable Thermal Conductivity
,”
Case Stud. Therm. Eng.
,
28
, p.
101544
.10.1016/j.csite.2021.101544
10.
Ur Rasheed
,
H.
,
Saleem
,
S.
,
Islam
,
S.
,
Khan
,
Z.
,
Khan
,
W.
,
Firdous
,
H.
, and
Tariq
,
A.
,
2021
, “
Effects of Joule Heating and Viscous Dissipation on Magnetohydrodynamic Boundary Layer Flow of Jeffrey Nanofluid Over a Vertically Stretching Cylinder
,”
Coatings
,
11
(
3
), p.
353
.10.3390/coatings11030353
11.
Ghasemi
,
S. E.
, and
Hatami
,
M.
,
2021
, “
Solar Radiation Effects on MHD Stagnation Point Flow and Heat Transfer of a Nanofluid Over a Stretching Sheet
,”
Case Stud. Therm. Eng.
,
25
, p.
100898
.10.1016/j.csite.2021.100898
12.
Krishna
,
M. V.
,
Ahammad
,
N. A.
, and
Chamkha
,
A. J.
,
2021
, “
Radiative MHD Flow of Casson Hybrid Nanofluid Over an Infinite Exponentially Accelerated Vertical Porous Surface
,”
Case Stud. Therm. Eng.
,
27
, p.
101229
.10.1016/j.csite.2021.101229
13.
Ali
,
B.
,
Thumma
,
T.
,
Habib
,
D.
, and
Riaz
,
S.
,
2021
, “
Finite Element Analysis on Transient MHD 3D Rotating Flow of Maxwell and Tangent Hyperbolic Nanofluid Past a Bidirectional Stretching Sheet With Cattaneo Christov Heat Flux Model
,”
Therm. Sci. Eng. Prog.
,
28
, p.
101089
.
14.
Ramzan
,
M.
,
Dawar
,
A.
,
Saeed
,
A.
,
Kumam
,
P.
,
Watthayu
,
W.
, and
Kumam
,
W.
,
2021
, “
Heat Transfer Analysis of the Mixed Convective Flow of Magnetohydrodynamic Hybrid Nanofluid Past a Stretching Sheet With Velocity and Thermal Slip Conditions
,”
PLoS One
,
16
(
12
), p.
e0260854
.10.1371/journal.pone.0260854
15.
Ramana
,
K. V.
,
Gangadhar
,
K.
,
Kannan
,
T.
, and
Chamkha
,
A. J.
,
2021
, “
Cattaneo–Christov Heat Flux Theory on Transverse MHD Oldroyd-B Liquid Over Nonlinear Stretched Flow
,”
J. Therm. Anal. Calorim.
, pp.
1
11
.10.1007/s10973-021-10568-x
16.
Ramzan
,
M.
,
Khan
,
N. S.
,
Kumam
,
P.
, and
Khan
,
R.
,
2021
, “
A Numerical Study of Chemical Reaction in a Nanofluid Flow Due to Rotating Disk in the Presence of Magnetic Field
,”
Sci. Rep.
,
11
(
1
), pp.
1
24
.10.1038/s41598-021-98881-1
17.
Awais
,
M.
,
Awan
,
S. E.
,
Raja
,
M. A. Z.
,
Parveen
,
N.
,
Khan
,
W. U.
,
Malik
,
M. Y.
, and
He
,
Y.
,
2021
, “
Effects of Variable Transport Properties on Heat and Mass Transfer in MHD Bioconvective Nanofluid Rheology With Gyrotactic Microorganisms: Numerical Approach
,”
Coatings
,
11
(
2
), p.
231
.10.3390/coatings11020231
18.
Zhao
,
T.
,
Khan
,
M. R.
,
Chu
,
Y.
,
Issakhov
,
A.
,
Ali
,
R.
, and
Khan
,
S.
,
2021
, “
Entropy Generation Approach With Heat and Mass Transfer in Magnetohydrodynamic Stagnation Point Flow of a Tangent Hyperbolic Nanofluid
,”
Appl. Math. Mech.
,
42
(
8
), pp.
1205
1218
.10.1007/s10483-021-2759-5
19.
Srinivasulu
,
T.
, and
Goud
,
B. S.
,
2021
, “
Effect of Inclined Magnetic Field on Flow, Heat and Mass Transfer of Williamson Nanofluid Over a Stretching Sheet
,”
Case Stud. Therm. Eng.
,
23
, p.
100819
.10.1016/j.csite.2020.100819
20.
Rasool
,
G.
,
Shafiq
,
A.
,
Alqarni
,
M. S.
,
Wakif
,
A.
,
Khan
,
I.
, and
Bhutta
,
M. S.
,
2021
, “
Numerical Scrutinization of Darcy–Forchheimer Relation in Convective Magnetohydrodynamic Nanofluid Flow Bounded by Nonlinear Stretching Surface in the Perspective of Heat and Mass Transfer
,”
Micromachines
,
12
(
4
), p.
374
.10.3390/mi12040374
21.
Li
,
Y. X.
,
Alshbool
,
M. H.
,
Lv
,
Y. P.
,
Khan
,
I.
,
Khan
,
M. R.
, and
Issakhov
,
A.
,
2021
, “
Heat and Mass Transfer in MHD Williamson Nanofluid Flow Over an Exponentially Porous Stretching Surface
,”
Case Stud. Therm. Eng.
,
26
, p.
100975
.10.1016/j.csite.2021.100975
22.
Punith Gowda
,
R. J.
,
Naveen Kumar
,
R.
,
Jyothi
,
A. M.
,
Prasannakumara
,
B. C.
, and
Sarris
,
I. E.
,
2021
, “
Impact of Binary Chemical Reaction and Activation Energy on Heat and Mass Transfer of Marangoni Driven Boundary Layer Flow of a Non-Newtonian Nanofluid
,”
Processes
,
9
(
4
), p.
702
.10.3390/pr9040702
23.
Reddy
,
P. S.
,
Sreedevi
,
P.
, and
Chamkha
,
A. J.
,
2022
, “
Heat and Mass Transfer Analysis of Nanofluid Flow Over Swirling Cylinder With Cattaneo–Christov Heat Flux
,”
J. Therm. Anal. Calorim.
,
147
(
4
), p.
3453
.10.1007/s10973-021-10586-9
24.
Qaiser
,
D.
,
Zheng
,
Z.
, and
Khan
,
M. R.
,
2021
, “
Numerical Assessment of Mixed Convection Flow of Walters-B Nanofluid Over a Stretching Surface With Newtonian Heating and Mass Transfer
,”
Therm. Sci. Eng. Prog.
,
22
, p.
100801
.10.1016/j.tsep.2020.100801
25.
Hussain
,
S.
,
Ahmad
,
F.
,
Ayed
,
H.
,
Malik
,
M. Y.
,
Waqas
,
H.
,
Al-Sawalha
,
M. M.
, and
Hussain
,
S.
,
2021
, “
Combined Magnetic and Porosity Effects on Flow of Time-Dependent Tangent Hyperbolic Fluid With Nanoparticles and Motile Gyrotactic Microorganism Past a Wedge With Second-Order Slip
,”
Case Stud. Therm. Eng.
,
26
, p.
100962
.10.1016/j.csite.2021.100962
26.
Xu
,
Y. J.
,
Bilal
,
M.
,
Al-Mdallal
,
Q.
,
Khan
,
M. A.
, and
Muhammad
,
T.
,
2021
, “
Gyrotactic Micro-Organism Flow of Maxwell Nanofluid Between Two Parallel Plates
,”
Sci. Rep
,
11
(
1
), pp.
1
13
.10.1038/s41598-021-94543-4
27.
Sreedevi
,
P.
, and
Reddy
,
P. S.
,
2021
, “
Williamson Hybrid Nanofluid Flow Over Swirling Cylinder With Cattaneo–Christov Heat Flux and Gyrotactic Microorganism
,”
Waves Random Complex Media
, pp.
1
28
.10.1080/17455030.2021.1968537
28.
Shi
,
Q. H.
,
Hamid
,
A.
,
Khan
,
M. I.
,
Kumar
,
R. N.
,
Gowda
,
R. J.
,
Prasannakumara
,
B. C.
, and
Chung
,
J. D.
,
2021
, “
Numerical Study of Bio-Convection Flow of Magneto-Cross Nanofluid Containing Gyrotactic Microorganisms With Activation Energy
,”
Sci. Rep.
,
11
(
1
), pp.
1
15
.10.1038/s41598-021-95587-2
29.
Muhammad
,
T.
,
Alamri
,
S. Z.
,
Waqas
,
H.
,
Habib
,
D.
, and
Ellahi
,
R.
,
2021
, “
Bioconvection Flow of Magnetized Carreau Nanofluid Under the Influence of Slip Over a Wedge With Motile Microorganisms
,”
J. Therm. Anal. Calorim.
,
143
(
2
), pp.
945
957
.10.1007/s10973-020-09580-4
30.
Chu
,
Y.-M.
,
Ramzan
,
M.
,
Shaheen
,
N.
,
Dong Chung
,
J.
,
Kadry
,
S.
,
Howari
,
F.
,
Malik
,
M. Y.
, and
Ghazwani
,
H. A. S.
,
2021
, “
Analysis of Newtonian Heating and Higher-Order Chemical Reaction on a Maxwell Nanofluid in a Rotating Frame With Gyrotactic Microorganisms and Variable Heat Source/Sink
,”
J. King Saud Univ. Sci.
,
33
(
8
), p.
101645
.10.1016/j.jksus.2021.101645
31.
Waqas
,
H.
,
Hussain
,
M.
,
Alqarni
,
M. S.
,
Eid
,
M. R.
, and
Muhammad
,
T.
,
2021
, “
Numerical Simulation for Magnetic Dipole in Bioconvection Flow of Jeffrey Nanofluid With Swimming Motile Microorganisms
,”
Waves Random Complex Media
, epub, pp.
1
18
.10.1080/17455030.2021.1948634
32.
Lu
,
D.
,
Ramzan
,
M.
,
Ullah
,
N.
,
Chung
,
J. D.
, and
Farooq
,
U.
,
2017
, “
A Numerical Treatment of Radiative Nanofluid 3D Flow Containing Gyrotactic Microorganism With Anisotropic Slip, Binary Chemical Reaction and Activation Energy
,”
Sci. Rep.
,
7
(
1
), pp.
1
22
.10.1038/s41598-017-16943-9
33.
Roy
,
S.
,
Raut
,
S.
, and
Kairi
,
R. R.
,
2022
, “
Thermosolutal Marangoni Bioconvection of a Non-Newtonian Nanofluid in a Stratified Medium
,”
ASME J. Heat Transfer
,
144
(
9
), p.
093601
.10.1115/1.4054770
34.
Kairi
,
R. R.
,
Shaw
,
S.
,
Roy
,
S.
, and
Raut
,
S.
,
2021
, “
Thermosolutal Marangoni Impact on Bioconvection in Suspension of Gyrotactic Microorganisms Over an Inclined Stretching Sheet
,”
ASME J. Heat Transfer
,
143
(
3
), p. 031201.10.1115/1.4048946
You do not currently have access to this content.