Abstract

Boiling is a multiscale phenomenon. Nucleation and rapid bubble growth at the heated wall provide a highly localized mechanism for heat transfer to the surrounding liquid. The liquid–vapor interface of the growing bubble supplies latent heat needed to evaporate the liquid and sustain the bubble activity. Although the boiling process is efficient in removing large amounts of heat, further improvements are needed to increase the critical heat flux (CHF) as well as heat transfer coefficient (HTC) in many applications. Recent developments in enhancing boiling heat transfer have mainly focused on small-scale heaters, typically on the order of a centimeter, that are particularly relevant in electronics cooling application. Many of these developments are based on fundamental understanding of the microscale processes of bubble nucleation, bubble growth and removal from the heater surface, and supply of liquid to the active nucleation sites. Some of these microscale enhancement techniques have set new records in heat dissipation (both CHF and HTC). This paper explores the potential of these microscale enhancement techniques in large-scale boiling equipment, such as boilers, reboilers, and evaporators in power generation, refrigeration, air conditioning, cryogenic, desalination, chemical, petrochemical, pharmaceutical, and other industries. Implementation of the microscale enhancement technologies in macroscale boiling equipment will provide the next level of energy efficiency and energy savings in the face of climate change and environmental concerns.

References

1.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Microchannels and Minichannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.10.1016/S0894-1777(02)00150-4
2.
Kandlikar
,
S. G.
,
2002
, “
Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Boiling in Minichannel Flow Passages of Compact Evaporators
,”
Heat Transfer Eng.
,
23
(
1
), pp.
5
23
.10.1080/014576302753249570
3.
Hyun
,
L. K.
, and
Jong-Pil
,
W.
,
1999
, “
Thermal Design Study of a High Performance Evaporator for the Automotive Air Conditioner
,”
SAE Trans.
,
108
(
6
), pp.
2216
2223
.
4.
Shah
,
R. K.
,
2003
, “
Advances in Automotive Heat Exchanger Technology
,”
SAE Trans.
,
112
, pp.
631
641
.
5.
Kockmann
,
N.
,
Gottsponer
,
M.
, and
Roberge
,
D. M.
,
2011
, “
Scale-Up Concept of Single-Channel Microreactors From Process Development to Industrial Production
,”
Chem. Eng. J.
,
167
(
2–3
), pp.
718
726
.10.1016/j.cej.2010.08.089
6.
Kang
,
H.
, and
Kim
,
K.
,
2012
, “
Thermal, Hydraulic and Drainable Performances of Slant Louver Fin for Automobile Applications
,”
SAE
Paper No. 2012-01-1218.10.4271/2012-01-1218
7.
Kockmann
,
N.
, and
Roberge
,
D. M.
,
2011
, “
Scale-Up Concept for Modular Microstructured Reactors Based on Mixing, Heat Transfer, and Reactor Safety
,”
Chem. Eng. Process.: Process Intensif.
,
50
(
10
), pp.
1017
1026
.10.1016/j.cep.2011.05.021
8.
Kockmann
,
N.
,
Thenée
,
P.
,
Fleischer-Trebes
,
C.
,
Laudadio
,
G.
, and
Noël
,
T.
,
2017
, “
Safety Assessment in Development and Operation of Modular Continuous-Flow Processes
,”
React. Chem. Eng.
,
2
(
3
), pp.
258
280
.10.1039/C7RE00021A
9.
Kockmann
,
N.
,
2012
, “
Modular Microstructured Reactors With Integrated Platform Concept
,”
Procedia Eng.
,
42
, pp.
1214
1218
.10.1016/j.proeng.2012.07.513
10.
Kockmann
,
N.
,
2008
,
Transport Phenomena in Micro Process Engineering
,
Springer
,
Berlin/New York
.
11.
Singh
,
J.
,
Kockmann
,
N.
, and
Nigam
,
K. D. P.
,
2014
, “
Novel Three-Dimensional Microfluidic Device for Process Intensification
,”
Chem. Eng. Process.: Process Intensif.
,
86
, pp.
78
89
.10.1016/j.cep.2014.10.013
12.
Yang
,
Y.
,
Brandner
,
J. J.
, and
Morini
,
G. L.
,
2012
, “
Hydraulic and Thermal Design of a Gas Microchannel Heat Exchanger
,”
J. Phys.: Conf. Ser.
,
362
, p.
012023
.10.1088/1742-6596/362/1/012023
13.
Brandner
,
J. J.
, and
Schubert
,
K.
,
2005
, “
Fabrication and Testing of Microstructure Heat Exchangers for Thermal Applications
,”
ASME
Paper No. ICMM2005-75071.10.1115/ICMM2005-75071
14.
Staedter
,
M. A.
, and
Garimella
,
S.
,
2018
, “
Development of a Micro-Scale Heat Exchanger Based, Residential Capacity Ammonia–Water Absorption Chiller
,”
Int. J. Refrig.
,
89
, pp.
93
103
.10.1016/j.ijrefrig.2018.02.016
15.
Goodremote
,
C. E.
,
Gunily
,
L. A.
, and
Costello
,
N. F.
,
1988
, “
Compact Air Cooled Air Conditioning Condenser
,”
SAE Trans.
,
97
, pp.
471
478
.
16.
Park
,
Y.
, and
Jacobi
,
A. M.
,
2006
, “
Air-Side Performance of Flat-Tube Louver-Fin Heat Exchangers Under Wet Conditions: Wet-Surface Multipliers for Colburn j- and f-Factors
,”
International Refrigeration and Air Conditioning Conference
, Purdue University, Purdue, e-Pubs, Paper No.
768
.http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F768&utm_medium=P DF&utm_campaign=P DFCoverPages
17.
Deng
,
Y.
,
Menon
,
S.
,
Lavrich
,
Z.
,
Wang
,
H.
, and
Hagen
,
C. L.
,
2017
, “
Design, Simulation, and Testing of a Novel Micro-Channel Heat Exchanger for Natural Gas Cooling in Automotive Applications
,”
Appl. Therm. Eng.
,
110
, pp.
327
334
.10.1016/j.applthermaleng.2016.08.193
18.
Kang
,
B. H.
, and
Lee
,
H. J.
,
2017
, “
A Review of Recent Research on Automotive HVAC Systems for EVs
,”
Int. J. Air-Cond. Refrig.
,
25
(
04
), p.
1730003
.10.1142/S2010132517300038
19.
Giampieri
,
A.
,
Ling-Chin
,
J.
,
Ma
,
Z.
,
Smallbone
,
A.
, and
Roskilly
,
A. P.
,
2020
, “
A Review of the Current Automotive Manufacturing Practice From an Energy Perspective
,”
Appl. Energy
,
261
, p.
114074
.10.1016/j.apenergy.2019.114074
20.
Wu
,
X. M.
, and
Webb
,
R. L.
,
2002
, “
Thermal and Hydraulic Analysis of a Brazed Aluminum Evaporator
,”
Appl. Therm. Eng.
,
22
(
12
), pp.
1369
1390
.10.1016/S1359-4311(02)00058-3
21.
The Editors of Encyclopedia Britannica
,
2021
, “
John Gorrie—American Physician
,” accessed Sept. 29, https://www.britannica.com/biography/John-Gorrie
22.
Gorrie
,
J.
,
1851
, “
Improved Process for the Artificial Production of Ice
,” U.S. Patent No. US8080A.
23.
Lester
,
P.
,
2015
, “
History of Air Conditioning
,” Department of Energy, accessed July 20, https://www.energy.gov/articles/history-air-conditioning
24.
Cramer
,
S. W.
,
1906
, “
Humidifying and Air Conditioning Apparatus
,” U.S. Patent No. US852823A.
25.
Shah
,
R. K.
,
1981
,
Classification of Heat Exchangers
,
Hemisphere Publishing
,
Washington, DC
, pp.
9
46
.
26.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.10.1080/01457630304040
27.
Bergles
,
A. E.
,
1997
, “
Enhancement of Pool Boiling
,”
Int. J. Refrig.
,
20
(
8
), pp.
545
551
.10.1016/S0140-7007(97)00063-7
28.
Webb
,
R. L.
,
2004
, “
Donald Q. Kern Lecture Award Paper: Odyssey of the Enhanced Boiling Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
6
), pp.
1051
1059
.10.1115/1.1834615
29.
Kim
,
D. E.
,
Yu
,
D. I.
,
Jerng
,
D. W.
,
Kim
,
M. H.
, and
Ahn
,
H. S.
,
2015
, “
Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
173
196
.10.1016/j.expthermflusci.2015.03.023
30.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2015
, “
Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
45
73
.10.1016/j.expthermflusci.2014.12.016
31.
Mori
,
S.
, and
Utaka
,
Y.
,
2017
, “
Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review
,”
Int. J. Heat Mass Transfer
,
108
(
Pt. B
), pp.
2534
2557
.10.1016/j.ijheatmasstransfer.2017.01.090
32.
Li
,
W.
,
Dai
,
R.
,
Zeng
,
M.
, and
Wang
,
Q.
,
2020
, “
Review of Two Types of Surface Modification on Pool Boiling Enhancement: Passive and Active
,”
Renewable Sustainable Energy Rev.
,
130
, p.
109926
.10.1016/j.rser.2020.109926
33.
Dedov
,
A. V.
,
2019
, “
A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer
,”
Therm. Eng.
,
66
(
12
), pp.
881
915
.10.1134/S0040601519120012
34.
Liang
,
G.
, and
Mudawar
,
I.
,
2019
, “
Review of Pool Boiling Enhancement by Surface Modification
,”
Int. J. Heat Mass Transfer
,
128
, pp.
892
933
.10.1016/j.ijheatmasstransfer.2018.09.026
35.
Liang
,
G.
, and
Mudawar
,
I.
,
2020
, “
Review of Channel Flow Boiling Enhancement by Surface Modification, and Instability Suppression Schemes
,”
Int. J. Heat Mass Transfer
,
146
, p.
118864
.10.1016/j.ijheatmasstransfer.2019.118864
36.
Mehralizadeh
,
A.
,
Shabanian
,
S. R.
, and
Bakeri
,
G.
,
2020
, “
Effect of Modified Surfaces on Bubble Dynamics and Pool Boiling Heat Transfer Enhancement: A Review
,”
Therm. Sci. Eng. Prog.
,
15
, p.
100451
.10.1016/j.tsep.2019.100451
37.
Li
,
X.
,
Cole
,
I.
, and
Tu
,
J.
,
2019
, “
A Review of Nucleate Boiling on Nanoengineered Surfaces—The Nanostructures, Phenomena and Mechanisms
,”
Int. J. Heat Mass Transfer
,
141
, pp.
20
33
.10.1016/j.ijheatmasstransfer.2019.06.069
38.
Singh
,
S. K.
, and
Sharma
,
D.
,
2021
, “
Review of Pool and Flow Boiling Heat Transfer Enhancement Through Surface Modification
,”
Int. J. Heat Mass Transfer
,
181
, p.
122020
.10.1016/j.ijheatmasstransfer.2021.122020
39.
Sajjad
,
U.
,
Sadeghianjahromi
,
A.
,
Ali
,
H. M.
, and
Wang
,
C.-C.
,
2020
, “
Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids—A Review on Enhancement Mechanisms
,”
Int. Commun. Heat Mass Transfer
,
119
, p.
104950
.10.1016/j.icheatmasstransfer.2020.104950
40.
Chen
,
J.
,
Ahmad
,
S.
,
Cai
,
J.
,
Liu
,
H.
,
Lau
,
K. T.
, and
Zhao
,
J.
,
2021
, “
Latest Progress on Nanotechnology Aided Boiling Heat Transfer Enhancement: A Review
,”
Energy
,
215
(
Pt. A
), p.
119114
.10.1016/j.energy.2020.119114
41.
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2021
, “
Pool Boiling Review: Part II—Heat Transfer Enhancement
,”
Therm. Sci. Eng. Prog.
,
25
, p.
101023
.10.1016/j.tsep.2021.101023
42.
Kandlikar
,
S. G.
,
2020
, “
Devices With an Enhanced Boiling Surface With Features Directing Bubble and Liquid Flow and Methods Thereof
,” U.S. Patent No. 10,697,629 B2.
43.
Kandlikar
,
S. G.
,
2013
, “
Controlling Bubble Motion Over Heated Surface Through Evaporation Momentum Force to Enhance Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
102
(
5
), p.
051611
.10.1063/1.4791682
44.
Zhu
,
Y.
,
Antao
,
D. S.
,
Xiao
,
R.
, and
Wang
,
E. N.
,
2014
, “
Real Time Manipulation With Magnetically Tunable Structures
,”
Adv. Mater.
,
26
(
37
), pp.
6442
6446
.10.1002/adma.201401515
45.
Kim
,
J.
,
Jun
,
S.
,
Laksnarain
,
R.
, and
You
,
S. M.
,
2016
, “
Effect of Surface Roughness on Pool Boiling Heat Transfer at a Heated Surface Having Moderate Wettability
,”
Int. J. Heat Mass Transfer
,
101
, pp.
992
1002
.10.1016/j.ijheatmasstransfer.2016.05.067
46.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
47.
Betz
,
A. R.
,
Jenkins
,
J.
,
Kim
,
C.-J.
, and
Attinger
,
D.
,
2013
, “
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surface
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
733
741
.10.1016/j.ijheatmasstransfer.2012.10.080
48.
Patil
,
C. M.
,
Santhanam
,
K. S. V.
, and
Kandlikar
,
S. G.
,
2014
, “
Development of a Two-Step Electrodeposition Process for Enhancing Pool Boiling
,”
Int. J. Heat Mass Transfer
,
79
, pp.
989
1001
.10.1016/j.ijheatmasstransfer.2014.08.062
49.
Wen
,
R.
,
Li
,
Q.
,
Wang
,
W.
,
Latour
,
B.
,
Li
,
C. H.
,
Li
,
C.
,
Lee
,
Y.-C.
, and
Yang
,
R.
,
2017
, “
Enhanced Bubble Nucleation and Liquid Rewetting for Highly Efficient Boiling Heat Transfer on Two-Level Hierarchical Surfaces With Patterned Copper Nanowire Arrays
,”
Nano Energy
,
38
, pp.
59
65
.10.1016/j.nanoen.2017.05.028
50.
Rishi
,
A. M.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2019
, “
Improved Wettability of Graphene Nanoplatelets (GNP)/Copper Porous Coating for Dramatic Improvements in Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
132
, pp.
462
472
.10.1016/j.ijheatmasstransfer.2018.11.169
51.
O'Hanley
,
H.
,
Coyle
,
C.
,
Buongiorno
,
J.
,
McKrell
,
T.
,
Hu
,
L.-W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2013
, “
Separate Effects of Surface Roughness, Wettability, and Porosity on the Boiling Critical Heat Flux
,”
Appl. Phys. Lett.
,
103
(
2
), p.
024102
.10.1063/1.4813450
52.
Kandlikar
,
S. G.
,
2017
, “
Enhanced Macroconvection Mechanism With Separate Liquid–Vapor Pathways to Improve Pool Boiling Performance
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
5
), p.
051501
.10.1115/1.4035247
53.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2011
, “
Direct Growth of Copper Nanowires on a Substrate for Boiling Applications
,”
Micro Nano Lett.
,
6
(
7
), pp.
563
566
.10.1049/mnl.2011.0136
54.
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2011
, “
Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—A Critical Review and Future Directions
,”
Heat Transfer Eng.
,
32
(
10
), pp.
827
842
.10.1080/01457632.2011.548267
55.
Lu
,
M.-C.
,
Chen
,
R.
,
Srinivasan
,
V.
,
Carey
,
V. P.
, and
Majumdar
,
A.
,
2011
, “
Critical Heat Flux of Pool Boiling on Si Nanowire Array-Coated Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5359
5367
.10.1016/j.ijheatmasstransfer.2011.08.007
56.
Dong
,
L.
,
Quan
,
X.
, and
Cheng
,
P.
,
2014
, “
An Experimental Investigation of Enhanced Pool Boiling Heat Transfer From Surfaces With Micro/Nano-Structures
,”
Int. J. Heat Mass Transfer
,
71
, pp.
189
196
.10.1016/j.ijheatmasstransfer.2013.11.068
57.
Yang
,
F.
,
Dai
,
X.
,
Peles
,
Y.
,
Cheng
,
P.
, and
Li
,
C.
,
2013
, “
Can Multiple Flow Boiling Regimes Be Reduced Into a Single One in Microchannels
,”
Appl. Phys. Lett.
,
103
(
4
), p.
043122
.10.1063/1.4816594
58.
Jaikumar
,
A.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2017
, “
Pool Boiling Enhancement Through Graphene and Graphene Oxide Coatings
,”
Heat Transfer Eng.
,
38
(
14–15
), pp.
1274
1284
.10.1080/01457632.2016.1242959
59.
Jaikumar
,
A.
,
Gupta
,
A.
,
Kandlikar
,
S. G.
,
Yang
,
C.-Y.
, and
Su
,
C.-Y.
,
2017
, “
Scale Effects of Graphene and Graphene Oxide Coatings on Pool Boiling Enhancement Mechanisms
,”
Int. J. Heat Mass Transfer
,
109
, pp.
357
366
.10.1016/j.ijheatmasstransfer.2017.01.110
60.
Santhanam
,
K. S. V.
,
Kandlikar
,
S. G.
,
Meija
,
V.
, and
Yue
,
Y.
,
2017
, “
Electrochemical Process for Producing Graphene, Graphene Oxide, Metal Composites, and Coated Substrates
,” U.S. Patent No. US9840782B2.
61.
Forrest
,
E.
,
Williamson
,
E.
,
Buongiorno
,
J.
,
Hu
,
L.-H.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2010
, “
Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
58
67
.10.1016/j.ijheatmasstransfer.2009.10.008
62.
Može
,
M.
,
Vajc
,
V.
,
Zupančič
,
M.
, and
Golobič
,
I.
,
2021
, “
Hydrophilic and Hydrophobic Nanostructured Copper Surfaces for Efficient Pool Boiling Heat Transfer With Water, Water/Butanol Mixtures and Novec 649
,”
Nanomaterials
,
11
(
12
), p.
3216
.10.3390/nano11123216
63.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Coupled Motion of Contact Line on Nanoscale Chemically Heterogeneous Surfaces for Improved Bubble Dynamics in Boiling
,”
Sci. Rep.
,
7
(
1
), p.
15691
.10.1038/s41598-017-16035-8
64.
Jaikumar
,
A.
,
Gupta
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
SEM Images of Gold, Palladium and Nickel Coatings
,”
Thermal Analysis and Microfluidics Lab, Rochester Institute of Technology
,
Rochester, NY
.https://www.rit.edu/kgcoe/mechanical/taleme/
65.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2018
, “
Experimental Study of Pool Boiling Heat Transfer on Copper Surfaces With CuAl2O3 Nanocomposite Coatings
,”
Int. Commun. Heat Mass Transfer
,
97
, pp.
47
55
.10.1016/j.icheatmasstransfer.2018.07.004
66.
Zou
,
A.
,
Poudel
,
S.
,
Raut
,
S. P.
, and
Maroo
,
S. C.
,
2019
, “
Pool Boiling Coupled With Nanoscale Evaporation Using Buried Nanochannels
,”
Langmuir
,
35
(
39
), pp.
12689
12693
.10.1021/acs.langmuir.9b02162
67.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling Enhancement Through Contact Line Augmentation
,”
Appl. Phys. Lett.
,
110
(
20
), p.
204101
.10.1063/1.4983720
68.
Nguyen
,
D. H.
, and
Ahn
,
H. S.
,
2021
, “
A Comprehensive Review on Micro/Nanoscale Surface Modification Techniques for Heat Transfer Enhancement in Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
178
, p.
121601
.10.1016/j.ijheatmasstransfer.2021.121601
69.
Pate
,
M. B.
,
Ayub
,
Z. H.
, and
Kohler
,
J.
,
1991
, “
Heat Exchangers for the Air-Conditioning Industry: State-of-the-Art Design and Technology
,”
Heat Transfer Eng.
,
12
(
3
), pp.
56
70
.10.1080/01457639108939757
70.
Khanpara
,
J. C.
,
Bergles
,
A. E.
, and
Pate
,
M. B.
,
1986
, “
Augmentation of R 113 In-Tube Evaporation With Microfin Tubes
,”
ASHRAE Trans.
,
92
(
Pt. 2
), pp.
506
524
.
71.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.10.1016/j.ijheatmasstransfer.2011.10.010
72.
Kandlikar
,
S. G.
, and
Patil
,
C.
,
2021
, “
Enhanced Boiling With Selective Placement of Nucleation Sites
,” Issued U.S. Patent No. U.S. 11,092,391 B2, U.S. Patent Office, European Patent No. EP 3132221B1, International Publication Number WO 2015/175147 A3, World Intellectual Property Organization.
73.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Enhanced Pool Boiling Heat Transfer Mechanisms for Selectively Sintered Open Microchannels
,”
Int. J. Heat Mass Transfer
,
88
, pp.
652
661
.10.1016/j.ijheatmasstransfer.2015.04.100
74.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Ultra-High Pool Boiling Performance and Effect of Channel Width With Selectively Coated Open Microchannels
,”
Int. J. Heat Mass Transfer
,
95
, pp.
795
805
.10.1016/j.ijheatmasstransfer.2015.12.061
75.
Mehta
,
J. S.
, and
Kandlikar
,
S. G.
,
2013
, “
Pool Boiling Heat Transfer Enhancement Over Cylindrical Tubes With Water at Atmospheric Pressure, Part I: Experimental Results for Circumferential Rectangular Open Microchannels
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1205
1215
.10.1016/j.ijheatmasstransfer.2013.03.087
76.
Mehta
,
J. S.
, and
Kandlikar
,
S. G.
,
2013
, “‘Pool Boiling Heat Transfer Enhancement Over Cylindrical Tubes With Water at Atmospheric Pressure, Pool Boiling Heat Transfer Enhancement Over Cylindrical Tubes With Water at Atmospheric Pressure,' Part II: Experimental Results and Bubble Dynamics for Circumferential VGroove and Axial Rectangular Open Microchannels,””
Int. J. Heat Mass Transfer
, 64, pp. 1216–1225.10.1016/j.ijheatmasstransfer.2013.04.004
77.
Bergles
,
A. E.
, and
Chyu
,
M. C.
,
1982
, “
Characteristics of Nucleate Pool Boiling From Porous Metallic Coatings
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
2
), pp.
279
285
.10.1115/1.3245084
78.
Scurlock
,
R. G.
,
1995
, “
Enhanced Boiling Heat Transfer Surfaces
,”
Cryogenics
,
35
(
4
), pp.
233
237
.10.1016/0011-2275(95)90826-2
79.
Liter
,
S. G.
, and
Kaviany
,
M.
,
2001
, “
Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4287
4311
.10.1016/S0017-9310(01)00084-9
80.
Cora
,
O. N.
,
Min
,
D.
,
Koc
,
M.
, and
Kaviany
,
M.
,
2010
, “
Microscale-Modulated Porous Coatings: Fabrication and Pool-Boiling Heat Transfer Performance
,”
J. Micromech. Microeng.
,
20
(
3
), p.
035020
.10.1088/0960-1317/20/3/035020
81.
Ji
,
X.
,
Xu
,
J.
,
Zhao
,
Z.
, and
Yang
,
W.
,
2013
, “
Pool Boiling Heat Transfer on Uniform and Non-Uniform Coating Surfaces
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
198
212
.10.1016/j.expthermflusci.2013.03.002
82.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Boiling Heat Transfer Phenomena From Microporous and Porous Surfaces in Saturated
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4437
4447
.10.1016/S0017-9310(97)00055-0
83.
El-Genk
,
M.
, and
Ali
,
A.
,
2010
, “
Enhanced Nucleate Boiling on Copper Micro-Porous Surfaces
,”
Int. J. Heat Mass Transfer
,
36
(
10
), pp.
780
792
.10.1016/j.ijmultiphaseflow.2010.06.003
84.
Protich
,
Z.
,
Santhanam
,
K. S. V.
,
Jaikumar
,
A.
,
Kandlikar
,
S. G.
, and
Wong
,
P.
,
2016
, “
Electrochemical Deposition of Copper in Graphene Quantum Dot Bath: Pool Boiling Enhancement
,”
J. Electrochem. Soc.
,
163
(
6
), pp.
E166
E172
.10.1149/2.0961606jes
85.
Jaikumar
,
A.
,
Rishi
,
A.
,
Gupta
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Microscale Morphology Effects of Copper–Graphene Oxide Coatings on Pool Boiling Characteristics
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
11
), p.
111509
.10.1115/1.4036695
86.
Rishi
,
A.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2020
, “
Salt Templated and Graphene Nanoplatelets Draped Copper (GNP‐Draped‐Cu) Composites for Dramatic Improvements in Pool Boiling Heat Transfer
,”
Sci. Rep.
,
10
(
1
), p.
11941
.10.1038/s41598-020-68672-1
87.
Kandlikar
,
S. G.
,
2019
, “
A New Perspective on Heat Transfer Mechanisms and Sonic Limit in Pool Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
5
), p.
051501
.10.1115/1.4042702
88.
Perez-Raya, I., and Kandlikar
,
S. G.
,
2018
, “Discretization and Implementation of a Sharp Interface Model for Interfacial Heat and Mass Transfer During Bubble Growth,”
Int. J. Heat Mass Trans.
, 116, pp. 30–49. 10.1016/j.ijheatmasstransfer.2017.08.106
89.
Kandlikar
,
S. G.
,
2020
, “
Evaporation Momentum Force and Its Relevance to Boiling Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
10
), p.
100801
.10.1115/1.4047268
90.
Kandlikar
,
S. G.
,
2020
, “
Devices With an Enhanced Boiling Surface With Features Directing Bubble and Liquid Flow and Methods Thereof
,” U.S. Patent No. U.S. 2020/0332997 A1.
91.
Yin, L., Jia, L., Guan, P., and Liu, F., 2014, “Evaporating Momentum Force and Shear Force on Meniscuses of Elongated Bubble in Microchannel Flow Boiling,“
J. Thermal Sci.
, 23(2), pp. 160–168.10.1007/s11630-014-0691-9
92.
Rahman
,
M. M.
,
Pollack
,
J.
, and
McCarthy
,
M.
,
2015
, “
Increasing Boiling Heat Transfer Using Low Conductivity Materials
,”
Sci. Rep.
,
5
(
1
), p.
13145
.10.1038/srep13145
93.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2016
, “
Bubble Growth and Departure Trajectory Under Asymmetric Temperature Conditions
,”
Int. J. Heat Mass Transfer
,
95
, pp.
824
832
.10.1016/j.ijheatmasstransfer.2015.12.058
94.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2019
, “
Pool Boiling Enhancement With Feeder Channels Supplying Liquid to Nucleating Regions
,” U.S. Patent No. 10,473,410.
95.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling Inversion Through Bubble Induced Macroconvection
,”
Appl. Phys. Lett.
,
110
(
9
), p.
094107
.10.1063/1.4977557
96.
Song
,
Y.
,
Gong
,
S.
,
Vaartstra
,
G.
, and
Wang
,
E. N.
,
2021
, “
Microtube Surfaces for the Simultaneous Enhancement of Efficiency and Critical Heat Flux During Pool Boiling
,”
ACS Appl. Mater. Interfaces
,
13
(
10
), pp.
12629
12635
.10.1021/acsami.1c00750
97.
Raghupathi
,
P. A.
,
Joshi
,
I. M.
,
Jaikumar
,
A.
,
Emery
,
T. S.
, and
Kandlikar
,
S. G.
,
2017
, “
Bubble Induced Flow Field Modulation for Pool Boiling Enhancement Over a Tubular Surface
,”
Appl. Phys. Lett.
,
110
(
25
), p.
251603
.10.1063/1.4987138
98.
Emery
,
T. S.
,
Jaikumar
,
A.
,
Raghupathi
,
P.
,
Joshi
,
I.
, and
Kandlikar
,
S. G.
,
2018
, “
Dual Enhancement in HTC and CHF for External Tubular Pool Boiling—A Mechanistic Perspective and Future Directions
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1053
1073
.10.1016/j.ijheatmasstransfer.2018.01.138
99.
Kandlikar
,
S. G.
,
Chauhan
,
A.
,
Emery
,
T.
,
Jaikumar
,
A.
, and
Raghupathi
,
P.
,
2021
, “
Passive Two Phase Heat Transfer Systems
,” U.S. Patent No. 11,073,340.
100.
Kandlikar
,
S. G.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
6
), p.
061401
.10.1115/1.4023574
101.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Combining Liquid Inertia With Pressure Recovery From Bubble Expansion for Enhanced Flow Boiling
,”
Appl. Phys. Lett.
,
107
(
18
), p.
181601
.10.1063/1.4935211
102.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Effect of Taper on Pressure Recovery During Flow Boiling in Open Microchannels With Manifold Using Homogeneous Flow Model
,”
Int. J. Heat Mass Transfer
,
83
, pp.
109
117
.10.1016/j.ijheatmasstransfer.2014.11.080
103.
Chauhan
,
A.
, and
Kandlikar
,
S. G.
,
2020
, “
Transforming Pool Boiling Into Self-Sustained Flow Boiling Through Bubble Squeezing Mechanism in Tapered Microgaps
,”
Appl. Phys. Lett.
,
116
(
8
), p.
081601
.10.1063/1.5141357
104.
Hayes
,
A.
,
Raghupathi
,
P. A.
,
Emery
,
T. S.
, and
Kandlikar
,
S. G.
,
2019
, “
Regulating Flow of Vapor to Enhance Pool Boiling
,”
Appl. Therm. Eng.
,
149
, pp.
1044
1051
.10.1016/j.applthermaleng.2018.12.091
You do not currently have access to this content.