This paper reports on the role of natural convection on solid–liquid interface motion and heat transfer during melting and solidification of a pure metal (gallium) on a vertical wall. The measurements of the position of the phase-change boundary as well as of temperature distributions and temperature fluctuations were used as a qualitative indication of the natural convection flow regimes and structure in the melt during phase transformation taking place in a rectangular test cell heated or cooled from one of the vertical walls. For melting, the measured melt volume and heat transfer coefficients are correlated in terms of relevant dimensionless parameters. For solidification, the measured volume of metal solidified on the wall is compared with predictions based on a one-dimensional model.

This content is only available via PDF.
You do not currently have access to this content.