
the thermocouple in the medium is less in the case of high-con
ductivity material because of the similar physical properties, 
neglecting the bead size may be reasonable. 

Conclusions 

1 The technique presented in this paper may be used to pre
dict the correct surface temperature in a deflagrating insulator. 

2 There is an "optimum" ratio of the thermocouple bead dia
meter to the lead wire diameter when the thermocouple bead is 
spherical. However, no matter what the bead size is, correc
tion for the thermocouple response and lead loss must be made. 
The error is more sensitive to the change in wire diameter. 

3 When a part of the thermocouple bead is exposed to a gas 
stream, especially when the thermocouple bead is large, the mea
surement can be quite erroneous unless the temperature gradient 
in the gas and the heat transfer coefficients are known. 

4 The surface temperature of deflagrating M-2 double-base 
propellants is about 300-330 deg C at 5-10 psia. 
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D I S C U S S I O N 

Robert C. Pfahl, Jr.3 

Suh and Tsai have tackled part of a very difficult problem: 
the study of the response of thermocouples embedded in an ablat
ing or deflagrating material. They have extended the work of 
Nydick [6] to include the effect of a thermocouple bead. Both 

3 Member of Research Staff, Western Electric Engineering Re
search Center, Princeton, N. J. 

Nydick and Suh and Tsai endeavor to model realistically the 
effect of a surface burning at a constant rate and temperature. 
Both works have modeled the moving surface by sacrificing a 
complete transient two-dimensional model of the conduction 
heat transfer between the material and the thermocouple. Tran
sient conduction between the material and the thermocouple is 
modeled using heat transfer coefficients. 

There are two heat transfer coefficients in Suh and Tsai's model: 
one to describe heat transfer between the thermocouple wire and 
the material, and one to describe heat transfer between the ther
mocouple bead and the material. The coefficients, equation (7), 
were developed by Nydick [6] from Beck's report [9]. Beck 
derived his heat transfer coefficient for a steady-state problem, 
for a linear temperature distribution in the material, and for a 
thermocouple oriented normal to the heated surface. The equa
tion included an effective length of the thermocouple, I, which 
was less than the total thermocouple length, L. Beck determined 
the validity of his approximate method of estimating thermo
couple temperature perturbations by comparing his solution with 
a two-dimensional finite-difference solution to the problem; he 
concluded that while the results showed substantial agreement, 
the numerical results would be recommended in general. 

Nydick used Beck's formula for the heat transfer coefficient, 
but changed the effective length to an undefined length, k, with
out indicating the change or offering comment. He applied 
the formula to a transient rather than steady-state problem in 
which the temperature distribution was exponential instead of 
linear. He did not demonstrate the validity of Beck's formula 
under these new conditions. 

Nydick extended Beck's formula to a wire located parallel to 
the heated surface. In his extension he assumed that the heat 
transfer coefficient was the sum of two terms: (1) Beck's formula 
for a wire normal to the heated surface and (2) a term which he 
described as "the gradient at that point in an undisturbed mate
rial." I t is not clear to this discusser why this second term should 
be present. Nydick further modified this model to the case of 
a wire at an angle to the heated surface; it is this coefficient which 
appears as equation (7) in Suh and Tsai's article. 

The following paragraphs discuss the suitability of equation 
(7) for describing heat transfer between the thermocouple wire 
and the material for the two limiting cases: 

a = 0, the thermocouple oriented normal to the heated surface 
a = 7r/2, the thermocouple oriented parallel to the heated 

surface. 

For the a = 0 case equation (7) should, but does not, reduce to 
Beck's original form. In addition, the ability of Beck's formula 
to describe transient conduction in a body with exponential 
temperature distribution should be demonstrated before it is 
used to describe this new situation. 

The a = x / 2 case has been studied in analytical [11] and 
experimental [12] papers. The paper by Pfahl and Dropkin [11] 
models the transient two-dimensional conduction for a step in 
surface heat flux using finite-differences. The conclusions of 
the study are that the disturbances can be severe if the sensor is 
located within four radii of the heated surface, or if the volu
metric specific heat, pcv, of the thermocouple is greater than twice 
that of the material. The disturbances are relatively insensitive 
to the ratio of thermal conductivities in contrast to the a = 0 
case [5]. 

The study predicts that there are two transient phases to the 
temperature disturbance. The thermocouple initially over-
responds because the temperature "wave" as it progresses into 
the material crosses the thermocouple faster than the neighboring 
material due to the thermocouple's higher diffusivity. After 
this brief initial transient, the thermocouple begins to lag the 
undisturbed temperature response. This delay in response is 
caused by the volumetric specific heat of the thermocouple being 
greater than that of the material; hence, the thermocouple acts 
as a heat sink. 
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The above effects were observed experimentally by Brewer 
[12]. Brewer instrumented samples with thermocouples oriented 
both normal and parallel to the heated surface and compared 
them to a reference thermocouple. He exposed his samples to 
a plasma arc so that his experimental boundary condition is 
essentially an isotherm moving at constant velocity. His results 
support the predictions for the a = 0 case [5] and a = 7r/2 case 
[11]. 

The above discussion indicates that a heat transfer coefficient 
for the a = 7r/2 case should depend on the ratio of volumetric 
specific heats and on the depth of the thermocouple; equation 
(7) depends on neither. The transient change in the sign of the 
perturbation suggest that the coefficient is a strong function of 
time. 

For the heat transfer coefficient between the bead and the 
material, Suh and Tsai again use equation (7). A possible 
alternative expression which has been developed to describe 
transient conduction from a sphere which is suddenly placed in 
a low-conductivity material at a different temperature [13] is 

h = 2k/D (15) 

For a bead diameter three times the wire diameter this alterna
tive expression becomes 

h = 2k/3R (16) 

which agrees with the first term of equation (7) except that the 
In (2L/R) term does not appear in the denominator. For Suh 
and Tsai's experiments with a y2-mil wire, In (2L/R) = 6.93; 
thus, the new coefficient would be 593 percent larger. 

I emphasize that the heat transfer coefficients used by Suh 
and Tsai were developed bj r previous authors. Suh and Tsai 
clearly question the validity of the coefficients which they use; 
they simply are using the best information available to them. 
They have demonstrated in Figs. 3 to 5 that an error of 100 per
cent in the coefficient will not strongly affect their predictions. 
The purpose of the preceding discussion is to indicate that these 
coefficients could be in error by more than 500 percent and 
that they could be strongly time-dependent. Until the ac
curacy of the coefficients is verified experimentally or by a more 
complete analytical model, it is premature for Suh and Tsai to 
use their model to reach conclusions on secondary effects such as 
the existence of an optimum bead diameter; the effect of chang
ing the bead diameter by a factor.of two is approximately the 
same as that produced by changing the heat transfer coefficient 
by the same factor. 

The effect of bead diameter on temperature measurements 
from thermocouples embedded in deflagrating materials also 
has been studied analytically by Strittmater, Holmes, and Water-
meier [14]. They develop a model which approximates what 
they consider to be the dominant mechanisms of heat transfer. 
They conclude that, "Although some important factors in the 
complete heat-transfer problem have been neglected in the fore
going analysis, qualitative estimates of these factors lead the 
writers to believe that the implications (of their results) will 
remain essentially unchanged in a more complete analysis." 
Their results do not reveal an optimum bead size, but rather that 
the ratio of D/d should be as large as possible. This prediction 
results from only considering the bead's ability to store thermal 
energy and neglecting the temperature perturbation which the 
bead causes. An unrealistic prediction from this model is that 
the disturbance is independent of wire diameter. Suh and Tsai's 
model, being more complete than that of reference [14], does 
predict that the disturbance depends primarily on wire diameter. 

Brewer [12] indicates that a serious source of error when there 
is a steep temperature gradient is not knowing the exact location 
of the sensor. Suh and Tsai's experimental results have been 
presented in a manner which masks any uncertainties in thermo
couple location. This masking occurs because the authors shift 
the time scale of their curves (time and location relative to the 
moving surface are linearly related) so that all thermocouples 

reach the surface at time zero. The experimental results offer 
no support for the conclusion that there is an optimum bead 
diameter, bu t the results do illustrate the severity of tem
perature perturbations and show the strong dependency on 
wire diameter. I t is to be hoped that these results will serve to 
point out to the uninitiated the severity of temperature pertur
bations produced by embedded sensors. 
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James V. Beck4 

The authors are to be commended on their choice of a method 
of analysis which utilizes the concept of a heat transfer coefficient 
in a solid. This concept was originally proposed in my report for 
AVCO [9]. While a paper based on this work was never pro
duced, one on the transient, two-dimensional analysis of a thermo
couple normal to the heated surface has been published [5]. 

The concept of a heat transfer coefficient in a solid is valid, but 
one must be careful to use it properly. An implicit premise in my 
derivation of 7a, is tha t it is a correction to a measurement that is 
being sought. Thus, say, a 10 percent error in estimating the 
correction results in a smaller error in the actual corrected tem
perature. Average coefficients found by relatively crude approxi
mations may be tolerated. Nevertheless, h can vary an order of 
magnitude; therefore, one should not use this estimation premise 
as a license for laxity. 

Suh and Tsai's equation (6) has been taken from a paper by 
Nydick. This author partially based his work upon mine. 
Mutations or rearrangements which occurred during the two 
reworkings will be discussed below. 

Reference [9] of their paper is an analysis of the steady-state 
problem of a thermocouple in a nonablating medium. The 
thermocouple is normal to the heated surface. The equation 
given for the heat transfer coefficient is 

h = 
2k/R 

3 In (21/R) 
(17) 

where I is not the length of the wire but a characteristic length de
pending upon the distance that the wire temperature, compared 
with the ambient, is depressed. The ambient temperature was 
considered to decrease linearly with y. 

In one of Nydick's cases, the relation 

h 
2k IR 

3 In (2k/R) 
kj3 (18) 

was given for a wire of length L parallel to an ablating surface and 
in a region where the temperature gradient is proportional to (3. 
The first term on the right-hand side is similar to equation (17) 
and the second is added to account for "the gradient at that point 
in an undisturbed material." No derivation of equation (18) was 
given, although Nydick refers to the heat flux 

q = k 
dr\R 

(19) 

4 Associate Professor, Department of Mechanical Engineering, 
Michigan State University, East Lansing, Mich. 
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curve 4, sphere, 
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curve 2, wire parallel 
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Fig. 12 Heat transfer coefficients in solids for certain cases 

Implicit in the derivation of equation (21) is that R + must be 
small. Equation (21) is shown as curve 1 of Fig. 12. 

The above analysis is for steady state. One can obtain quasi-
steady h values for a constant ablation velocity. Two cases may 
be obtained fairly directly from Carslaw and Jaeger [15] using 
line and point sources in a medium moving at velocity r. An 
infinite line source perpendicular to the direction of movement 
(analogous to a wire parallel to the heated surface) produces 

hd _ 2 

I ~ K0(R
+) 

(23) 

where K0(x) is the zero-order modified Bessel function of the 
second kind. The result is shown as curve 2 in Fig. 12. Again 
R + is assumed to be small. 

In the case of an infinite wire normal to the heated surface, the 
describing equation for transient radial heat transfer outside an 
infinite cylinder is 

?•' dr ' \ dr / = PCP 

dT 
(24) 

The equation for steady-state heat transfer from outside an 
infinite cylinder to a fluid flowing parallel to its axis is 

k _d_ (,,&£\ 
r' dr' \ &»V 

• pc r 
dz 

(25) 

which for his orientation varies between ±B{Tt — T0)k but has 
the average value of zero. Nydick also modified the kB term to a 
form similar to the last term of equation (7). Note that as a goes 
to zero this term becomes 

Bk 
(1 + e~^) (20) 

Clearly this value is not zero, yet it should be in order to reduce to 
equation (17). Nydick accepted equation (17) for the case of a 
wire normal to the heated surface. I conclude that the second 
term in equations (7) and (18) should not be present. 

Nydick did not give equation (7) exactly as Suh and Tsai wrote 
it. For example, instead of In 12L/R), he gave In (2l2/R); how
ever, he did not explicitly state what 1% is. For equation (18) 
Nydick considered the geometry of the wire to be the shape of an 
inverted L with the shorter leg parallel to the heated surface. 
For this case the length of the short leg might possibly be identi
fied with U. Nydick also considered the case of a wire at angle a. 
(as shown by Fig. 1) for length L' with the wire then bent normal 
to the heated surface. Although not specified, Nydick may 
have intended a to be near 90 deg and L' to be small, in which 
case h in equation (18) might possibly be represented by L' (but 
the Bk term should be dropped). Suh and Tsai considered an un
bent wire but retained the Nydick analysis and let 1/ become 
large and equal to L, the length of the thermocouple wire em
bedded in the insulator. They then set l2 equal to L. After these 
modifications, equation (7) becomes incorrect for the use in
tended. 

Rather than this expression, several alternatives are sug
gested. Instead of I = L, the wire length in equation (17) would 
be better expressed as I = )3 - 1 = r/a where a = k/pc. Then 
equation (17) can be written 

where 

M _ 4 

k ~ 3 1nfl-i 

d = 2R R+ = ~ 
2a 

(21) 

(22) 

where ?•' is the radial coordinate and r is the axial velocity. 
Notice that any solution of (24) is also a solution of (25) with t 
replaced by z/r. For the boundary conditions for T(r',z) 

T(R,z) = To 

T(<°,z) = T„ 

T(r',0) = r „ 

one can derive for small R + 

(26) 

hd 

k 
= 2 

- 1 7 
\n.R+ + y 2[ lnfl+ + 7 ] 2 + ... (27) 

utilizing Carslaw and Jaeger's equation [16] and employing z = 
a/r as the characteristic length. This result is shown as curve 3 
of Fig. 12. In equation (27), 7 = 0.57722 . . . is Euler's constant. 

A heat transfer coefficient for the spherical junction can be 
obtained by using the moving point source solution [17]. For 
small R+ one can derive 

hD 
= 2enH (28) 

for steady state. This result is the upper curve (curve 4) of Fig. 
12. Unlike tha t of the wire, the sphere value of h has a non-zero 
value as R+ approaches zero. 

I t is not apparent how these results may be compared with those 
of Suh and Tsai. If there is a sufficiently large value for L/R in 
equation (7), it reduces to 

hD 
2R + (29) 

which is the lower straight line in Fig. 12. Compared to curves 2 
and 3, this can be 100 percent or more in error. 

Several other aspects of the paper are worthy of comment, for 
example, the choice of finite-difference scheme. Other approxi
mations, such as the Crank-Nicolson, are more accurate and 
stable for any time step. Also, a generalized transient analysis 
could be developed, together with some correction kernels, for 
use in other integrals [18]. Further comments will be deferred. 
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Authors' Closure 
I t is indeed gratifying that our paper aroused sufficient interest 

on the part of Dr. Pfahl and Professor Beck to write such ex
tensive comments. We would like to thank them for the thor
ough study of the paper. I t is rather amusing, in a sense, that 
what we considered to be the most trivial part of the paper gen
erated more interest than any other aspect of the paper. Since 
it is clear that the major purpose of the paper has not been con
veyed to the readers, the basic purpose of the work will be stated 
here and our approach to this type of problem will be discussed. 

The major purpose of the paper is to convey a concept which 
enables the "measurement" of the surface temperature of a 
rapidly deflagrating solid. The purpose of the paper is not to 
evaluate various heat transfer coefficients in solids. The method 
used by others in the past in "measuring" the surface temperature 
was to use a thermocouple and then through analyses determine 
the probable error involved in the measurement. Such a method 
is not reliable since the validity of the analyses cannot be checked. 
Therefore, we decided to "predict the surface temperature by 
measuring its value using several sizes of thermocouples and by 
extrapolating the results to zero wire diameter based on the most 
probable temperature profile in the solid. 

In order to accomplish the stated purpose, reasonable values 
for the heat transfer coefficients were going to be assumed in order 
to by-pass the difficulty of knowing the exact extent of the region 
disturbed by the presence of the thermocouple. We felt that 
as long as the temperatures measured by various sized thermo
couples could be predicted by a model to the desired accuracy, 
the exact form of the heat transfer coefficients would not be 
important for our purpose. Then, we found that the Nydick's 
expressions were available. We used Nydick's expressions as 
the first approximation, since the whole question of the heat 

transfer coefficients in solids has not been verified experimentally 
to a satisfactory degree, as Dr. Pfahl pointed out in his comments. 
Our method might not have been a good one if it depended sen
sitively on the heat transfer coefficient. However, it turned out 
that the solution does not depend on the coefficient sensitively, 
as shown in the paper. For our purpose any expression or values 
for the heat transfer coefficient that correctly predicted the sur
face temperatures measured by a large number of different sized 
thermocouple wires would have been acceptable. For example, 
we could have assumed the heat transfer coefficient to be a poly
nomial function of pertinent parameters with undetermined 
coefficients and then varied the coefficients until it fit all the 
experimental results. 

We would like to thank both Dr. Pfahl and Professor Beck for 
commenting on the numerical scheme. We are certain that the 
comments will be useful to those who want to refine the concept 
presented in our paper. However, we think that our solutions 
are sufficiently accurate. Furthermore, one should realize that 
the assumed model is an approximation of a complex, real phe
nomenon. Reasonable solutions, i.e., reasonable both in time, 
cost, and accuracy, have to be provided to this type of real prob
lem without losing sight of one's objectives. The accuracy of a 
numerical result cannot, after all, exceed the accuracy within 
which a model can approximate the actual phenomenon. 

Finally, a few comments will be made on the optimum ratio 
of the bead diameter to the wire diameter. The exact value for 
the optimum ratio will be subject to the assumptions made in the 
paper such as the dependence of the heat transfer coefficient on 
the radius of the thermocouple bead. Therefore, if the expression 
given b}' Dr. Pfahl, i.e., equation (15), is used, the optimum 
ratio will assume a different value. I t will be interesting to use 
the equation suggested by Dr. Pfahl and to determine if it yields 
a better correlation with the experimental results. When the 
total heat transfer rate from the surrounding material to the bead 
does not depend on the size of the thermocouple, obviously the 
smaller the bead the more accurate will be the result. The pur
pose of discussing the question of the optimum bead size was to 
point out that making the bead diameter as small as possible 
at a great expense does not necessarily guarantee accurate mea
surements. 
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