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Fig. 9 Variation of predicted thermal development length with Reynolds 
numbers and radius ratio for air (Pr = 0.7) 

perature profiles are evaluated from equation (25) where the di-
mensionless temperature at the edge of the thermal boundary 
layer has been calculated using the appropriate value of 8T

+ at 
the predetermined value of x/De. Fig. 6 shows the developing 
temperature profiles as a function of x/De with the fully de­
veloped profile compared with the data of Lee referred to earlier. 

The temperature profiles may be integrated to obtain the di-
mensionless bulk temperature (cf. equation (26)) and hence the 
local Nusselt number variation with x/Dc is determined from 
equation (29). For the two radius ratios considered, generally 
excellent agreement is found between prediction and the experi­
mental data gathered by Roberts and Barrow for air, as shown in 
Figs. 7 and 8. The small discrepancies that do appear at the 
high values of Reynolds number are, as pointed out by Roberts 
and Barrow, due to the trip wires being larger than necessary, 
thus enhancing the heat transfer rates in that region. Neverthe­
less, it is felt that the agreement achieved by the analysis in the 
developing thermal boundary layer is attributed to the fact that 
tripping wires were used in the experiments. This insured that 
the boundary layers were fully turbulent from the entry point as 
postulated in the analysis. Unfortunately, they did not present 
any developing pressure gradient data in their paper which might 
have afforded a more realistic test of the analysis in the develop­
ing hydrodynamio boundary layers. 

Finally, the variation of the thermal development length as a 
function of radius ratio and Reynolds number is shown in Fig. 9. 
The general trends of these curves are in accordance with those 
predicted by Lee [20] who analyzed the developing thermal 
boundary layer in hydrodynamically fully developed flow in an 
annulus. In the case analyzed here, a slightly greater develop­
ment length is required. 

Conclusions 
An analytical investigation, using integral techniques, has been 

made of the local flow and heat transfer characteristics of a fluid 
in turbulent motion in the entry region of a concentric annulus 
which has a uniformly heated core and an insulated outer wall. 
The important conclusions are: 

1 Fully developed hydrodynamic flow is attained in an en­
trance length of approximately 10 equivalent diameters in the 
range of Rej'nolds number studied. The radius ratio range in­
vestigated was found to have no influence on x/De. 

2 Fully developed turbulent heat transfer is obtained within a 
further 30 equivalent diameters. Increasing the Reynolds num­
ber and radius ratio leads to an increase in the required x/De. 
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D I S C U S S I O N 

E. M. Sparrow2 

Since the fluid flow and heat transfer results depend on the 
choice of a turbulent transport model, it is relevant to compare 
the 6,,/ representation, equation (15), with available data. To 
this end, the authors may wish to numerically evaluate equation 
(15) and compare the resulting eM with experimentally deter­
mined eM profiles measured b j ' Jonsson and Sparrow.3 The ex­
periments covered the Reynolds number range from approxi­
mately 30,000 to 180,000 and encompassed radius ratios from 
0.28 to 0.75. These ranges are relevant to those investigated in 
the present paper. 

2 Department of Mechanical Engineering, University of Minnesota, 
Minneapolis, Minn. Mem. ASME. 

3 Jonsson, V. K., and Sparrow, E. M., "Turbulent Diffusivity for 
Momentum Transfer in Concentric Annuli," Journal of Basic Engi­
neering, TRANS. ASME, Series D, Vol. 88, 1966, pp. 550-552. 
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Fig. 10 Comparison of the assumed eddy diffusivify distribution to 
experimental data 

Authors' Closure 
We thank Professor Sparrow for his contribution, and we wish 

to point out that in the preparation of the paper, comparisons 
were made to available data although this is not specifically men­
tioned in the paper. 

eM was in fact calculated using equation (17) which was derived 
from equation (15) as is explained in the text. For fully de­
veloped flow, di + = (/•„ — ri)ui*/v, 52+ = ()'2 — rm)ui*/v, and for 
regions away from the wall [1 — exp ( — y+/A+)\ approaches 
unity. Thus the statement of equation (17) reduces essentially 
to the form of equation (15) with the exception that 6 = 2 in the 
inner region of the annulus and b = 2.5 in the outer region. A 
comparison with the data of Brighton [22] is made in the thesis 
[23] from which the present paper has arisen and the agreement 
is good within about 10 percent. For the sake of comparison Fig. 
10 shows a similar sort of agreement with Jonsson and Sparrow's 
results. 
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