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D I S C U S S I O N 
P. D. Richardson3 

The solutions presented in this paper are determined for a 
particular set of problems, within a general class for transient 
conduction in a finite slab, where the heat transferred to the slab 
is continuously positive or negative as time increases. As in 
many other studies of transient conduction, it is assumed that 
the temperature through the slab is initially uniform and that the 
slab has one face which is adiabatic. The proccss of transient 
conduction under these conditions can be considered as composed 
of two parts: an initial penetration, where the temperature dis-
tribution is very close to that found in a semi-infinite slab subject 
to the same surface conditions and thermal properties; then, 
once the temperatures at the adiabatic surface of the slab begin 
to change significantly, it becomes necessary to take account of 
finite thickness of the slab, with the temperature distribution at 
the end of the first part of the process being taken as the initial 
condition of the second part of the transient conduction process. 
In practice a sharp distinction between these two parts of the 
transient conduction process cannot be drawn. However, there 
exist certain approximate methods where this viewpoint offers a 
convenient framework for analysis. It appeal's that the authors 
are not aware of some of the work which has been done in this 
connection [18].4 The results of these methods offer additional 
scope for comparison and interpretation of the solutions which 
have been presented. Some simplifications can be made in the 
relations which are used to estimate temperature distributions 
under conditions which lie outside the range of the charts. The 

* Assistant Professor of Engineering, Brown University, Provi-
dence, R. I. Assoc. Mem. ASME. 

4 Numbers in brackets designate Additional References at end of 
discussion. 

approximate methods to be described also provide a means for 
estimation of temperature distributions through the thickness of 
a finite slab. In the calculation of thermal stresses and the de-
termination of the thermal buckling behavior of plates and shells 
it is very desirable to have a good estimation of the temperature 
distribution through the thickness of the solid material involved. 
Problems of this nature have drawn some attention in the past, 
e.g. [19, 20], though in problems for which solutions have been 
presented the temperature distributions have been of a somewhat 
simple nature. However, the operating conditions of current 
and projected devices are such that greater attention needs to 
be given to problems such as that discussed in the present paper. 

In the discussion which follows, it is found desirable to treat the 
problems of radiant heating and radiant cooling separately. 
However, some of the techniques which are involved apply to 
both heating and cooling. It should be understood, therefore, 
that some of the ideas used in connection with radiant cooling 
are discussed in connection with radiant heating. 

The approximate method which is used in this discussion is 
based upon a variational method which has been extensively 
described by Biot [21, 22] who also provided some examples of 
its use. More recently, Lardner [18] and Richardson [23] have 
presented solutions to some further examples. As applied to the 
analysis of one-dimensional heat conduction, use of the variational 
method requires the assumption of a particular form of tempera-
ture profile and a sufficient number of generalized coordinates q 
are assigned to describe it. It is convenient (and often surpris-
ingly accurate) to assume that the temperature profile is para-
bolic. Thus, for transient conduction in a semi-infinite body, it 
is assumed that the temperature profile is parabolic within the in-
terval 0 < x < q? and zero at all x > q>. The surface temperature 
do is assigned to be the generalized coordinate q\, so that the 
initially uniform slab temperature is taken as the reference zero. 
Then 

6 = ?' - T { = q, j l - 0 $ x $ q2. (31) 

When it is necessary to describe the temperature profile within a 
finite slab, the temperature at the nonadiabatic surface is as-
signed to be the generalized coordinate qi, again, while the tem-
perature at the adiabatic surface is assigned to be the generalized 
coordinate q3. The temperature distribution is then 

0 = T - Tf = (q, - q.) j l - j * - q, (32) 

In both cases the coordinate x is measured from the nonadiabatic 
surface. It may be noted that the parabolic profile assumed for 
the finite slab automatically satisfies the condition that the back 
surface is adiabatic, since the temperature gradient is zero there. 
For the problem which involves transient conduction in a semi-
infinite body, the coordinate q-i can be regarded as the penetration 
depth of the temperature transient. When unsteady conduction 
is occurring in a finite slab, at small times the penetration depth 
qi will be less than L. As q? increases with time, it will at some 
finite time become equal to L. Until that time it is possible to 
regard the transient as occurring in a semi-infinite body. The 
time required for q2 to reach L is called the penetration time. 

Radiant Heating 

As shown by the authors, it is possible to use solutions for the 
temperature distribution in a slab of finite thickness subject to a 
constant heat flux into the slab as an approximation for transient 
radiant heating when the initial temperature ratio is near zero. 
Lardner shows that the solution of Carslaw and Jaeger is ap-
proximated well by the simpler expression 

T, = 7', - ^ S 'VFO - 0.3328 - 0.8374 exp ( - 2 1 i V t o ) } (33) 
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when NFo exceeds its penetration value of 0.149. Since con-
stant heat flux has been assumed, it is also necessary to limit ap-
plication of this equation to about TJTe < 0.4. These limita-
tions mean that the foregoing equation is limited to large values 
of Nrh. However, at very large Nrh, the temperature distribu-
tion in the slab as a function of time approaches rapidly to its 
asymptotic, analytic form, as given by the solution to equation 
(27). 

It is worthwhile to note that a dimensionless time scale 
i} = Nr<,/Nrl or NFo/Nrc arises naturally in the solutions of equa-
tion (27). If the transients in the charts given in the paper are 
replotted on this time scale, it is found that at large time the 
transients for different Nrh or Arrc tend to converge. For radiant 
heating, the convergence is virtually complete by the order of 

= 1.0. At smaller 77, it is observed that transients for small 
values of Nrh achieve a specific value of (T — Ti)l(Tt — T{) 
earlier than transients for large values of Arr/l. Transients for 
finite values of N r h appear in this sense to have a "lead-time" 
or "advance-time" over the asymptotic solution. It may also 
be noted that the variation of the dimensionless temperature 
( T — Ti ) / (T e — 7',) as given by the asymptotic solution for the 
case TJT, = 0 is very close to being a linear function of rj over 
the range of dimensionless temperature from about 0.03 to 0.9. 
This covers the major range of variation of the slab temperature. 

For a range of ArF» the dimensionless temperature exceeds 0.4 
before NFO exceeds its penetration value. Under these circum-
stances, and for cases when ATrh is large but there is interest in the 
temperature at small values of time, it becomes necessary to use 
an approximation based upon an analysis of transient conduction 
in a semi-infinite body. As mentioned before, an approximate 
solution for this is given by Lardner, and the dimensionless time 
at which penetration to the back of the slab occurs is given by 

r, = 0.149/W,,. (34) 

and the dimensionless temperature in the period up to this time is 
given by 

T, - Tj 1 l r ( A 7 ) F o ' A / T, W (TM 

and 

?2 = 2 .59(a0" 2 (36) 

The writer found that these expressions checked well with the 
charts given in the paper over the range of applicability of the 
equations. It may be noted that the range of values of Nrh for 
which these approximations can be applied right up to the pene-
tration time is limited by the assumption of constant heat flux. 
However, within the range of Nrh for which these equations re-
main a good approximation, it is possible to exploit them in an 
approximate method for determining temperatures at larger 
times. 

The manner in which the solution for transient conduction in a 
semi-infinite body can be used as a stepping stone for estimation 
of the temperature distribution at times greater than the penetra-
tion time for a finite slab can be explained as follows. Consider a 
slab at a time exceeding the penetration time. If the tempera-
ture at each point within the slab is increasing linearly with time, 
the temperature distribution at any instant of time within the 
slab will be parabolic. The surface temperature will determine 
the heat flux at any instant of time which crosses the outer sur-
face into the slab. Provided that the rate of change of surface 
temperature with respect to dimensionless time remains constant, 
it would not be possible to tell the difference between the slab 
having a finite value of Nrh and an asymptotic slab from measure-
ment of the rate of change of dimensionless surface temperature 
with respect to dimensionless time. This is a consequence of the 
fact that bodies of the same thickness and specific heat will re-
quire the same heat flux to raise the temperature at each point 
within the slab linearly with the time whether or not at any given 

time the temperature is uniform through the slab. For a given ra-
diation configuration and initial temperatures, the temperature 
rise of the slab surface is proportional to the dimensionless pene-
tration time -q. The proportionality is greater than that asso-
ciated with values of the asymptotic solution for large values of 
Nrh, and results in the surface temperature reaching a particular 
value at a time earlier on the dimensionless time scale than would 
the surface of an asymptotic slab. This time difference is the 
"lead-time" or "advance-time" noted earlier. These observations 
lead to the suggestion of a method of approximate calculation of 
temperatures in a slab at times greater than the penetration time 

•/as well as times less than this. 
The approximation can be summarized as follows: For times 

less than the penetration time as given by equation (34) the tem-
perature within the slab can be estimated from equations (35) 
and (36). When the dimensionless penetration time is achieved 
this time and the corresponding surface temperature should be 
calculated using the same equations. The dimensionless time at 
which the asymptotic solution for large Nrh achieves the same 
temperature should also be calculated. The difference between 
this latter time and the penetration time should then be deter-
mined; this time is termed the "lead-time." The surface tem-
perature at any time subsequent to the penetration time can be 
estimated by assuming that it is the same temperature which 
would be achieved by the asymptotic solution at a time equal to 
the time of interest plus the lead-time. Conversely, if it desired 
to estimate the time at which the surface temperature will 
achieve a certain value, the time which would be taken by the 
asymptotic case to achieve that temperature can be calculated 
directly from the analytic solution, and then the lead-time sub-
tracted from this. The temperature at the adiabatie surface of a 
slab can be assumed to lag behind that of the heated surface by 
the amount of the difference which is found when the penetration 
time is achieved. This approximation is restricted to values of 
the dimensionless temperature below 0.9, and to values of Nrh 

exceeding about 2.0. 

To gain some idea of the order of accuracy of this approxima-
tion, a few sample cases were calculated and compared with the 
graphs presented in the paper. For the solutions where TJTe = 0 
the somewhat extreme example of Nrh = 2.0 gave a penetration 
time 7) = 0.0785 with a dimensionless temperature at the surface of 
0.216; it was estimated that the dimensionless time required to 
reach this time by the asymptotic solution was "ij = 0.225. This 
gives an expected lead-time of 0.1465, while values which were 
measured from Fig. 4(c) of the paper gave estimates over a wide 
range of times for the lead-time of 0.142 to 0.150. As another 
example, the case of TJTe = 0.75 with Nrh = 5.0 was taken; 
the dimensionless penetration time was estimated at TJ = 0.030 
with the dimensionless surface temperature corresponding to this 
being 0.236. The estimated time for the asymptotic solution to 
achieve this temperature was -q = 0.094, giving an expected lead-
time of 0.064. The lead-time was estimated from Fig. 7(c) as 
about 0.065. It appears from a few sample cases examined 011 
the basis of the charts that the temperature difference from the 
forward and back surfaces of the slab begins to decrease sig-
nificantly once the slab temperature at the surface reaches a di-
mensionless value of about 0.8. 

Beyond the bounds for reasonable use of the approximations 
described previously, there remains a range of the radiation num-
ber Nrh for which no very simple approximation can be provided. 
Small values of the radiation number (less than, say, 0.1) are en-
countered when the thermal conductivity is relatively small or 
when the slab thickness is relatively large. When the slab con-
ductivity is small, it is unlikely that the boundary condition at 
the back surface of the slab is physically realistic; it would require 
the provision of a material having a thermal conductivity of a 
magnitude orders smaller than a quantity which is already small 
in terms of the practical range of thermal conductivities. On this 
basis it is to be expected that the penetration times for such 
slabs will be very long, and that the major change in surface tem-
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perature will occur over a time interval when the slab can be 
treated as a semi-infinite body . For such problems the solutions 
for the semi-infinite slab subject to a constant heat flux at the ex-
posed surface cannot be used. Examination of the relationship 
between surface temperature and time as determined b y the solu-
tions presented in this paper for small values of the radiation 
number suggests that the surface temperature varies roughly as 
the nth power of the time over a fairly large interval in dimen-
sionless temperature; it should be possible to base an approxi-
mate estimation on this fact. 

The authors discuss the case where the radiation number is 
zero. They assume that this corresponds to the condition where 
a slab undergoes a step change in the surface temperature. 
Values are presented in the charts and comparisons are made with 
analysis in accordance with this assumption. I t appears that the 
case where the radiation number is zero in fact presents an am-
biguity. The case which the authors have treated is that where 
the numerator in the expression for the radiation number tends 
to zero. There is an alternative case where the radiation number 
becomes zero when the denominator within the expression for the 
radiation number becomes infinite. This latter case can occur, 
for example, when the slab thickness L becomes infinite. The 
solution to this latter problem then becomes formally identical 
with the solution for a semi-infinite slab. I t may be noted that 
the dimensionless time scale N?0/(ATrk)2 does not contain the slab 
thickness L explicitly, and it is possible for the radiation num-
ber to go to zero without this dimensionless time going to infinity. 
It is worthwhile to note that this dimensionless time scale is the 
one used b y Lardner in discussion of transient conduction in a 
semi-infinite solid. I t should be emphasized therefore that the 
case where the radiation number tends to zero does not neces-
sarily mean that surface temperature of the slab undergoes a 
step change. 

Radiation Cooling 

Approximate methods of calculation of the transient tempera-
ture distribution in a finite slab subject to radiation cooling can 
be based upon the methods described in connection with radiation 
heating, but it is found that the range of utilityof each approxima-
tion is more limited. 

Lardner [18] applied Biot 's method to determine the transient 
temperature distribution in a semi-infinite slab which looses heat 
at a rate proportional to a power m of the surface temperature. 
Solutions presented include the case m = 4. This corresponds to 
the case where Tt/Tt = 0 which is treated in the paper here. 
As a starting point in application of this method, Lardner o b -
tained two first-order simultaneous nonlinear differential equa-
tions; solutions were obtained by integrating the equations 
numerically b y the Runge-Kutta technique, while the asymptotic 
solutions for short-times and for long-times were obtained 
analytically. The short-time solution begins to diverge sig-
nificantly from the numerical solution once a dimensionless time 
A W O V J 2 exceeds 0.01, and the long-time asymptotic solution 
converges very slowly with the numerical solution so that dif-
ferences between them are still large when the dimensionless time 
has reached 100. Use of the conveniently simple asymptotic 
solutions for estimation of the temperature distributions at small 
times and for estimation of lead-times is therefore restricted in the 
range of dimensionless times over which each may be employed, 
in a way which does not occur for the corresponding solution 
used in connection with radiation heating. However, within the 
range of applicability it appears that the values obtained b y 
Lardner compare well with the numerical solutions presented in 
this paper, and that estimates of lead-time can still be made in 
the same manner. Wi th radiation cooling, it does appear that 
the real lead-time varies somewhat with time to a degree which is 
greater than that found with radiation heating. This is very 
probably due to the fact that the asymptotic solution itself is less 
linear with respect to time for radiation cooling thau it is for 
radiation heating. 

The short-time asymptotic solution for radiation cooling is 
identical in form with the solution for constant heat flux cited 
earlier in connection with radiant heating. Lardner showed that 
the numerical solution of the equations obtained b y Biot 's method 
agrees well with the solution of Abarbanel. 

Lardner also discussed the case of a finite slab, with TJT{ = 0 
and presented a solution for the surface temperature history for 
Nrc = 1. This appears to be in good agreement with the rel-
evant curve in Fig. 8(c). The asymptotic solution for long times, 
valid for all Nrc, and obtained from application of Biot 's method, 

J R = ( A „ / 3 V P , , ) ' / » . ( 3 7 ) 

The dimensionless temperature in this equation is the complement 
of the dimensionless temperature used in Fig. 8 (to which the 
equation is appropriate). The writer observed when cross-plot-
ting the curves in Fig. 8(c), as T/Ti versus jV F o / iV„ on log-log 
paper, that the dimensionless times taken to attain the asymp-
totic slope of — Va were indeed long: about t] = 10 for N r c = 10, 
and 77 = 7 0 f o r A r „ = 0.1. Agreement with the asymptotic solu-
tion was good beyond these times. 

M u c h of the discussion on radiation cooling has centered so far 
on the case TJT, = 0. When TJT( > 0, it is of course found 
that dimensionless times required to achieve a particular dimen-
sionless temperature decrease as TJT{ increases. Comparison 
with the charts given in the paper indicates that the lead-time 
method for estimating temperature histories is less accurate than 
with radiation heating. However, there does appear to be an 
approximate scheme b y which dimensionless temperatures can be 
estimated for T,/T{ > 0 if the temperature history for the same 
Nrc is known for TJT, = 0. The approximation is at a specific 
value of dimensionless time r/ = ATFD/Nre and for a specific Nrc, 
the dimensionless temperature at TJ'I\ > 0 is greater than the 
dimensionless temperature at T,/Tf = 0 b y the fa c to r / , given b y 

/ = exp { l . 44 ( r e / 7\ . ) } . (38) 

The writer has not determined all the bounds within which this 
approximation is at all reasonable, but it is clear that it would 
not be used when either of the dimensionless temperatures in-
volved is outside the range of about 0.1 to 0.9. 

When the simpler methods of approximation fail, the effort re-
quired to make approximations based upon more involved 
methods begins to approach that required to obtain a numerical 
or analog solution. In some circumstances it is found that dimen-
sionless surface temperatures are closely proportional to the 
nth power of time, and the iteration to find n in a specific case 
can converge very rapidly; for such cases the effort required 
exceeds only slightly that for the simpler methods. 

The authors are to be thanked for providing the charts and 
associated details for this problem. Such charts are useful both 
for direct application and as a testing ground for approximate 
schemes. 
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Authors' Closure 
We wish to thank Professor P. D . Richardson for his informa-

tive comments. His presentation of an approximate method of 
solution should be of interest to all who are concerned with the 
analysis of transient nonlinear boundary value problems. The 
authors would like to emphasize that even though such approxi-
mate solutions may be restricted in their applicability, they do 

serve to complement analog solution charts and to verify theii 
accuracy. 

It is hoped that an insight will be gained through use of approxi-
mate techniques, both analog and analytical, which will eventu-
ally lead to exact analytical solutions, not only for the relatively 
simple model of this investigation, but also for nonlinear prob-
lems of greater complexity. 
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