We report a theoretical study of heat conduction across metal-dielectric interfaces in devices and structures of practical interest. At cryogenic temperatures, the thermal interface resistance between electrodes and a substrate is responsible for substantial reduction in the maximum permissible peak power in Josephson junctions. The thermal interface resistance is much smaller at elevated temperatures but it still plays a critical role in nanoscale devices and structures, especially nanolaminates that consist of alternating metal and dielectric layers. A theoretical model is developed to elucidate the impact of spatial nonequilibrium between electrons and phonons on heat conduction across nanolaminates. The diffuse mismatch model is found to provide reasonable estimates of the intrinsic thermal interface resistance near room temperature as well as at cryogenic temperatures.

1.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
(
3
), pp.
605
668
.
2.
Ju
,
Y. S.
,
Lee
,
W.-Y.
,
Cyrille
,
M.-C.
,
Fontana
,
R. E.
, and
Gurney
,
B. A.
, 2002, “
Thermal Engineering of Giant Magnetoresistive (GMR) Sensors: Alternative Dielectric Gap
,”
IEEE Trans. Magn.
0018-9464,
38
(
5
), pp.
2259
2261
.
3.
Ju
,
Y. S.
, 2006, “
Nanoscale Thermal Phenomena in Tunnel Junctions for Spintronics Applications
,”
ASME J. Electron. Packag.
1043-7398,
128
(
2
), pp.
109
114
.
4.
Ju
,
Y. S.
, and
Lee
,
W. Y.
, 2003, US Patent No. 6,579,590.
5.
Costescu
,
R. M.
,
Cahill
,
D. G.
,
Fabreguette
,
F. H.
,
Sechrist
,
Z. A.
, and
George
,
S. M.
, 2004, “
Ultra-Low Thermal Conductivity in W∕Al2O3 Nanolaminates
,”
Science
0036-8075,
303
(
5660
), pp.
989
990
.
6.
Ju
,
Y. S.
,
Hung
,
M.-T.
,
Carey
,
M. J.
,
Cyrille
,
M.-C.
, and
Childress
,
J. R.
, 2005, “
Nanoscale Heat Conduction across Tunnel Junctions
,”
Appl. Phys. Lett.
0003-6951,
86
,
203113
.
7.
Chen
,
G.
, 1998, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
0163-1829,
57
(
23
), pp.
14958
14973
.
8.
Chong
,
Y.
,
Dresselhaus
,
P. D.
, and
Benz
,
S. P.
, 2003, “
Thermal Transport in Stacked Superconductor-Normal Metal-Superconductor Josephson Junctions
,”
Appl. Phys. Lett.
0003-6951,
83
(
9
), pp.
1794
1796
.
9.
Skocpol
,
W. J.
,
Beasley
,
M. R.
, and
Tinkham
,
M.
, 1974, “
Self-Heating Hotspots in Superconducting Thin-film Microbridges
,”
J. Appl. Phys.
0021-8979,
45
, pp.
4054
4066
.
10.
Klemens
,
P. G.
, 1958, “
Thermal Conductivity of Lattice Vibrational Modes
,” Solid State Physics, Vol.
7
,
F.
Seitz
and
D.
Turnbull
, eds.,
Academic
, New York.
11.
Ju
,
Y. S.
, 2005 “
Impact of Nonequilibrium between Electrons and Phonons on Heat Transfer in Metallic Nanoparticles Suspended in Dielectric Media
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1400
1403
.
12.
Yoo
,
K.-H.
, and
Anderson
,
A. C.
, 1986, “
Thermal Impedance to Normal and Superconducting Metals
,”
J. Low Temp. Phys.
0022-2291,
63
, pp.
269
286
.
13.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perelman
,
T. L.
, 1974, “
Emission of Electrons from the Surface of Metals Induced by Ultrashort Laser Pulses
,”
Zh. Eksp. Teor. Fiz.
0044-4510,
66
(
2
), pp.
776
781
.
14.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat-Transfer Mechanisms During Short-Pulse Laser-Heating of Metals
,”
ASME J. Heat Transfer
0022-1481,
115
(
4
), pp.
835
841
.
15.
Majumdar
,
A.
, and
Reddy
,
P.
, 2004, “
Role of Electron-Phonon Coupling in Thermal Conductance of Metal-Nonmetal Interfaces
,”
Appl. Phys. Lett.
0003-6951,
84
(
23
), pp.
4768
4770
.
16.
Gurevich
,
Y. G.
, and
Mashkevich
,
O. L.
, 1989, “
The Electron-Phonon Drag and Transport Phenomena in Semiconductors
,”
Phys. Rep.
0370-1573,
191
(
6
), pp.
327
294
.
17.
Berman
,
R.
, 1976,
Thermal Conduction In Solids
,
Clarendon
, Oxford.
18.
Xu
,
J.-B.
,
Läuger
,
K.
,
Möller
,
R.
,
Dransfeld
,
K.
, and
Wilson
,
I. H.
, 1994, “
Heat Transfer Between Two Metallic Surfaces at Small Distances
,”
J. Appl. Phys.
0021-8979,
76
, pp.
7209
7216
.
19.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
(
2
), pp.
793
818
.
20.
Lee
,
S. M.
, and
Cahill
,
D. G.
, 1997, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
0021-8979,
81
(
6
), pp.
2590
2595
.
21.
Kim
,
J. H.
,
Feldman
,
A.
, and
Novotny
,
D.
, 1999, “
Application of the Three Omega Thermal Conductivity Measurement Method to a Film on a Substrate of Finite Thickness
,”
J. Appl. Phys.
0021-8979,
86
(
7
), pp.
3959
3963
.
22.
Stoner
,
R. J.
, and
Maris
,
H. J.
, 1993, “
Kapitza Conductance and Heat-Flow Between Solids at Temperatures from 50 to 300K
,”
Phys. Rev. B
0163-1829,
48
(
22
), pp.
16373
16387
.
23.
Kading
,
O. W.
,
Skurk
,
H.
, and
Goodson
,
K. E.
, 1994, “
Thermal Conduction in Metallized Silicon-Dioxide Layers on Silicon
,”
Appl. Phys. Lett.
0003-6951,
65
(
13
), pp.
1629
1631
.
24.
Costescu
,
R. M.
,
Wall
,
M. A.
, and
Cahill
,
D. G.
, 2003, “
Thermal Conductance of Epitaxial Interfaces
,”
Phys. Rev. B
0163-1829,
67
(
5
),
054302
.
You do not currently have access to this content.