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In this work, a discrete element model (DEM) is developed and implemented in the open
source flow solver MFiX to simulate the effective thermal conductivity of powder beds for
selective laser sintering (SLS) applications, considering scenarios common in SLS such
as thin beds, high temperatures, and degrees of powder consolidation. Random particle
packing structures of spherical particles are generated and heat transfer between the
particles is calculated. A particle–particle contact conduction model, a particle–
fluid–particle conduction model, and a view factor radiation model using ray-tracing for
calculation of view factors and assuming optically thick particles are used. A nonlinear
solver is used to solve for the particle temperatures that drive the net heat transfer to
zero for a steady state solution. The effective thermal conductivity is then calculated from
the steady state temperature distribution. Results are compared against previously pub-
lished experimental measurements for powder beds and good agreement is obtained.
Results are developed for the impacts of very high temperatures, finite bed depth, consoli-
dation, Young’s modulus, emissivity, gas conductivity, and polydispersity on effective
thermal conductivity. Emphasis is placed on uncertainty quantification in the predicted
thermal conductivity resulting from uncertain inputs. This allows SLS practitioners to
control the inputs to which the thermal response of the process is most sensitive.
[DOI: 10.1115/1.4033351]

1 Introduction

The free-form fabrication techniques reduce the costs of creat-
ing prototypes or small batch parts by creating parts directly from
computer-aided design models. SLS is a promising free-form fab-
rication process as it works with a wide variety of materials and
does not require the creation of support structures to hold the part
during build. SLS produces a solid object by selectively fusing
successive layers of powder. A thin layer of powder is deposited
on top of a piston. The surface of the powder is then scanned by a
laser with a modulated power, fusing the powder to itself and the
layer below where the cross section is intended to be solid and
leaving it loose where it is not. When the scan of the layer is com-
plete, the piston holding the part is lowered, a new layer of pow-
der is deposited on top and the process repeats. After the build is
complete, the loose powder is removed, leaving the final part [1].
SLS processing parameters (laser power and speed, scan pattern,
preheat temperature, etc.) have a strong influence on the quality of
the resulting part. However, it is difficult to determine the optimal
processing parameters for a given material and geometry. Thus,
experimentation is often required when using new materials or
geometries to determine the parameters needed to produce an ac-
ceptable part. Testing of each part is often needed if the part is
required to meet certain quality standards.

Accurate computational models of the SLS process have the
potential for providing solutions to the problems of parameter
determination and quality assurance. Continuum models, in which
the powdered material is treated as a continuous medium as
opposed to a collection of individual particles, are particularly
promising in their ability to handle large domains on the same
scale as the part being built without incurring prohibitive

computational expense. Continuum models describe the heat
transfer in the powder bed using the heat equation

qcp
@T

@t
¼ r � krTð Þ þ f x; y; z; tð Þ (1)

While density can be easily measured and is often provided by
the powder manufacturer, specific heat does not change when the
solid material is powderized, and laser properties are either known
or controllable, bulk properties such as the effective thermal con-
ductivity cannot be so easily inferred. While the thermal conduc-
tivity of the solid may be available, it is expected to decrease
considerably when the material is in powdered form due to the
introduction of contact resistance between the powder particles.

Numerous works have investigated, experimentally, analyti-
cally, and computationally the effective thermal conductivity of
powdered materials [2]. Masamune and Smith [3], Cheng and
Vachon [4], Gusarov et al. [5], and Slavin et al. [6,7] all devel-
oped analytical models of conductivity of powder beds. Xue and
Barlow [8,9] and Yuan et al. [10] both measured the effective
thermal conductivities in Nylon-12 powder beds and developed
empirical relations from this for SLS applications. Sih [11] meas-
ured the effective thermal conductivities, as well as other bulk
powder properties, of a variety of metals for use in SLS. Vargas
and McCarthy [12] used a particle dynamics simulation to predict
the effective conductivity of granular media. Zhang et al. [13],
Tsory et al. [14], Widenfeld et al. [15], and Feng et al. [16] all
used DEM to calculate the thermal conductivity of powder beds.
However, none of these works consider powder bed scenarios
commonly found when performing SLS, specifically finite bed
depths, when a thin layer of powder is present on top of a solid,
already sintered, surface, and temperatures close to the melting
temperature where radiation effects become increasingly im-
portant. This work uses DEM to examine the impact of these,
as well as other, effects on the effective thermal conductivity of
a powder bed.
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2 Modeling Approach

In order to calculate effective thermal conductivity, a powder
bed is represented using the DEM of the open source software
MFiX as a series of spherical particles, each with a position, ra-
dius, emissivity, and solid conductivity [17,18]. As the particles
are made up of solid material, solid properties can be used for the
particle conductivity. Each particle is modeled as a lumped capac-
itance control volume with a single, uniform temperature. Tem-
perature gradients within particles are not resolved. Heat can be
exchanged between particles via particle–particle conduction
( _Qr), particle–fluid–particle conduction ( _Qpfp), and radiation
( _Qrad). The net heat source in a particle is then given by the sum
of all the heat being exchanged with all other particles across all
three mechanisms as illustrated in Fig. 1. Heat transfer between
the particles and the background gas is neglected as the gas con-
ductivity is an order or magnitude less than the calculated effec-
tive thermal conductivities. We have performed scoping
calculations which establish that this approximation has negligible
impact on our results.

Fixed temperatures are set at two opposite walls of the domain,
as shown in Fig. 2. All particles are given an initial temperature
and net heat sources are calculated for each particle. Powell’s
method [19], with Jacobians calculated by finite differencing, is
then used to determine a temperature for each particle such that
_Qr þ _Qpfp þ _Qrad ¼ 0, thus putting the particle bed in steady state.

Once the steady-state particle temperatures are known, the heat
fluxes from the walls are calculated and from these the effective
thermal conductivity is determined using Fourier’s law.

2.1 Powder Bed Generation. Particle packings are generated
by inserting a chosen number of particles per time at a random
location on a boundary with an initial velocity and allowing them
to interact with other particles in the domain and respond to gravi-
tational forces [18]. Particles interact with each other using a
spring–dashpot model in which contact forces are generated based
on the degree of overlap a particle has with its neighbors
(described in detail by Garg et al. [17]). For the purposes of this
work, the MFiX particle–particle interaction model was used only
as a means to generate a random packing of particles. Particles are
injected into the domain from the top boundary and allowed to
fall under the influence of gravity and interact with other particles
already in the domain. Once the particles settle, their positions
and properties are used as an input for the heat transfer model.

2.2 Particle–Particle Conduction. The particle–particle con-
duction model accounts for the heat transfer due to particles being
in direction contact. The MFiX–DEM particle–particle conduction
model uses a modified Batchelor and O’Brien [20] method in
which the heat transfer between two particles in contact is propor-
tional to the radius of contact, as shown in Fig. 3 [18].

_Q
i;jð Þ

r ¼ 4kikj

ki þ kj
Rc Tj � Tið Þ (2)

Rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i �
R2

i � R2
j þ l2

i;j

2li;j

 !2
vuut

(3)

Gusarov et al. [5] and Vargas and McCarthy [12] used a similar
model in their efforts. A similar equation applies for a particle in
contact with a wall, which is modeled as a flat plane. In that case,
li,j is defined as the distance between the particle center and the

wall and the contact radius becomes Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i � l2
i;j

q
.

When using the MFiX–DEM spring–dashpot model to generate
bed packing structures, the size of the time step that the explicit
solver can take is governed by the value of the particle spring con-
stant used in the model [17]. Thus, if spring constants were set to
values reflective of the actual material Young’s modulus, the nec-
essary time step size would be prohibitively small. To counteract
this, particles are generally modeled as being softer than they
actually are in order to reduce the computational cost. Reducing
spring coefficients to 105 N/m is found to have little impact on the
resulting packing structures as compared to much stiffer coeffi-
cients and results in greatly reduced computational times.

However, when using the heat transfer models, this leads to an
overestimation of the overlap between particles and thus an over-
estimation of particle–particle conduction. Therefore, a correction
is applied to Rc by equating the normal contact force calculated
by the spring–dashpot model (Fn ¼ knds) with the contact force
calculated using Hertzian contact theory (Fn ¼ ð4=3ÞEeR1=2

e d3=2
h ),

where ds is the particle overlap predicted by the spring–dashpot
model. The equation is solved for dh, the overlap predicted by

Fig. 1 Particle model

Fig. 2 Particle bed Fig. 3 Particle–particle conduction
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Hertzian theory, and which is used to calculate a new radius of
contact to use in the heat transfer model [13]

Rc;e ¼
3kNli;jRe

4Ee

� �1=3

(4)

1

Re
¼ 1

Ri
þ 1

Rj
(5)

1

Ee
¼ 1� �2

i

Ei
þ

1� �2
j

Ej
(6)

Thus, while softer particles are used for bed generation, true parti-
cle material properties are used by the heat transfer model.

In this analysis, the contacts between particles are assumed to
be perfectly smooth. Thus, while contact resistance is modeled
using the contact radius, the effect of surface roughness, which
can reduce the effective contact radius further, is not included. By
its nature, the DEM approximates particles as perfectly spherical
and is not expected to yield good predictions for nonspherical par-
ticles or particles with highly irregular surfaces. As is discussed in
Secs. 3.1 and 3.2, the smooth, spherical particle model outlined
here yields good results for metal powders, but ceramic powders
require calibration.

2.3 Particle–Fluid–Particle Conduction. The particle–fluid–
particle model accounts for the heat transfer between the particles
through the gas layer around the particles which occurs when two
particles are close by, as shown in Fig. 4. This mechanism differs
from the conduction of heat from a particle or wall to a background
gas and then back to a particle or wall some distance later. The
particle–fluid–particle mechanism accounts for heat transfer
directly between particles close to each other across a small intersti-
tial gas path. The MFiX–DEM particle–fluid–particle conduction
model uses a modified Rong and Horio [21] method

_Q
i;jð Þ

pfp ¼ kg Tj � Tið Þ
ðR

i;jð Þ
f

Rc

2pr

lcond

dr (7)

lcond ¼ li;j � ðR2
i � r2Þ1=2 þ ðR2

j � r2Þ1=2
� �

(8)

lcond is the conduction distance between the two particles at a
given r value and Rf is the fluid radius, the radius of the circle
formed by the overlap of the two particle’s fluid lenses. A fluid
lens is a layer of fluid surrounding a particle in which
particle–fluid–particle heat transfer can occur. By default,

MFiX–DEM uses a value of 0.2R for this parameter [18]. Equa-
tion (7) contains a singularity at the point of contact between two
particles as the conduction distance goes to zero. This is remedied
in MFiX–DEM by imposing a minimum conduction distance,
which is set to 1 lm by default [18].

2.4 Radiation. In this paper, the heat transfer models of
MFiX–DEM are extended by the addition of a view factor radia-
tion model. The view factor model is only valid in the geometric
optic limit, so ðpDp=kÞ � 1 must be satisfied for it to be used,
where Dp is the average particle diameter and k is the peak wave-
length emitted by the particles at the temperature of interest.
Additionally, the model assumes all particles to be completely
opaque, so it cannot be applied to transparent or partially transpar-
ent materials.

The radiation heat transfer between two particles is given by
the equation for reradiating surfaces

_Q
i;jð Þ

rad ¼
r T4

i � T4
i

� �
1� ei

eiAi
þ 1

AiFi!j
þ 1� ej

ejAj

(9)

A similar equation applies for heat transfer between a particle and
a wall due to radiation.

The view factors between the particles and other particles and
particles and walls are determined using a Monte Carlo method.
For every particle, a number of rays are fired from the particle
from a random location on its surface in a random direction and
the first particle or wall they intersect with is recorded. The view
factors between a particle and any other particle or wall are then
given by the ratio of the number of rays fired from the first particle
that intersect the second particle or wall to the total number of
rays fired from that particle.

The Marsaglia rejection method [22] is used to pick a random
point on the surface of a particle from which to fire a ray. This
method allows a point on a sphere to be randomly selected with-
out the use of trigonometric functions. Two uniform random num-
bers, x1 and x2, between �1 and 1, are selected and the sum of
their squares computed. If the sum of squares is greater than 1, the
set is discarded and two new numbers are selected. If it is less
then 1, x, y, and z coordinates of a random point on the sphere can
be calculated from the pair using algebraic manipulations [22]

x ¼ 2x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1 � x2
2

q
(10)

y ¼ 2x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1 � x2
2

q
(11)

z ¼ 1� 2ðx2
1 þ x2

2Þ (12)

Once a point on a particle is chosen, a coordinate shift is then
applied and centered about that point to align the z-direction with
the outward facing normal. Then, the direction of the fired ray is
selected by choosing a random point on the unit sphere centered
at the point chosen on the particle. The Marsaglia rejection
method [22] is used again with an additional rejection criterion
applied that the chosen point must have a non-negative z-
component to ensure that a point on the outward facing hemi-
sphere is chosen. Finally, the vector determined by connecting the
chosen point on the surface of the particle with the chosen point
on the outward facing unit hemisphere is shifted back to the origi-
nal coordinate system [23].

2.5 Uncertainty Quantification. Uncertainty in the model
prediction is due to three different sources: input uncertainty, bed
generation uncertainty, and consolidation uncertainty. The input
uncertainty is due to the uncertainties in the material properties
passed to the model as inputs. These are gas conductivity, solidFig. 4 Particle–fluid–particle conduction
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particle conductivity, Young’s modulus, Poisson’s ratio, and solid
density. Bed generation uncertainty is due to the inherent random-
ness in the process used to generate the powder beds. Since the
initial positions of the particles when they enter the domain are
random, the final resulting powder bed structure once the particles
settle is also random. Consolidation uncertainty occurs because
the degree of consolidation in a given real powder bed is
unknown. Consolidation occurs when particles in a powder bed
are rearranged to give a more compact structure and commonly
occurs as the result of a pressure being applied to the bed and then
released or the bed being shaken. Consolidation results in a
decrease in the porosity of a powder bed and thus changes the
effective thermal conductivity.

In order to assess the impact of input uncertainties, the general-
ized polynomial chaos framework [24,25] is employed as a way
of representing the stochastic relationship between the inputs and
outputs of the model. The model inputs are represented as proba-
bility density functions and the goal is to determine the probability
density function of the output (effective thermal conductivity).
The output is expressed as a polynomial expansion in the input
random variables and a stochastic collocation technique [26,27] is
used in which the model is solved deterministically at selected
collocation points, sparsely distributed in the multidimensional
random parameter space [28]. These collocation points are then
used in interpolation schemes to reconstruct coefficients of a poly-
nomial expansion. In this paper, a Smolyak sparse grid is
employed [28] with a second-order polynomial expansion. Once
the coefficients of the expansion are known, the resulting response
surface may be sampled by drawing samples from the input distri-
butions to predict a probability density function of the output. The
standard deviation of the output is a measure of the overall uncer-
tainty in the model prediction resulting from uncertainties in the
inputs.

Bed generation uncertainties are estimated by generating multi-
ple different random powder bed configurations and averaging the
calculated effective thermal conductivity across all of them. The
resulting standard deviation is then a measure of the uncertainty
in the model prediction due to the randomness of the powder bed.

Consolidation uncertainties are estimated by lowering the top
boundary of a powder bed to the point where it overlaps with the
top layer of particles by a small amount (on the order of the parti-
cle radius). The resulting forces then cause the powder bed to
rearrange itself into a more compact structure. Finally, the top
boundary is raised again to relieve any stresses that could not be
relieved by particle rearrangement. The effective thermal conduc-
tivity is then calculated for the unconsolidated powder bed as well
as for four different consolidated beds produced by lowering the
top boundary by different amounts. Results are averaged across
all five beds and a standard deviation calculated. This standard
deviation is an estimate of the uncertainty due to the unknown
degree of bed consolidation, or, equivalently, the unknown
porosity.

3 Results and Discussion

3.1 Model Validation for Metal Powders. In order to assess
the impact of finite bed depth, polydispersity, and high tempera-
tures on the effective thermal conductivity of powder beds, the
model is first validated against data available in the literature for
metal particles. Cheng and Vachon [4] obtained the experimental
data for both steel of an unknown alloy and lead particles at room
temperature, Bala et al. [29] measured the effective thermal con-
ductivity of copper particles at room temperature, and Widenfeld
et al. [15] presented the data for steel particles of an unknown
alloy at approximately 30 �C. Monodisperse particle beds are gen-
erated for each material in a cubic domain 10D on each side. This
is determined to be large enough that further increasing the size of
the domain has negligible effect on the results. Table 1 shows the
data from these three sources compared against the predictions of

the current model. kmodel is the effective thermal conductivity pre-
dicted by the model, rmodel is the standard deviation of the model
prediction, and kexp is the reported experimental effective thermal
conductivity.

Table 2 shows the material properties used for the three differ-
ent metals and Table 3 shows how many particles are in the beds
generated for each of the five cases along with the corresponding
average porosity across the different levels of consolidation. The
standard deviation of the porosity is included to show the degree
of uncertainty in the porosity as a result of consolidation. In each
case, particles are added to completely fill the domain. Young’s
modulus, particle conductivity, and gas conductivity are repre-
sented as uniform probability density functions for the purposes of
calculating input uncertainty. The uniform probability density
functions are chosen to capture the high degree of uncertainty in
the steel alloys being used and the exact temperature experiments
are run at.

The other inputs (density and Poisson’s ratio) are either well
known or determined to have little impact on the calculated effec-
tive thermal conductivity and thus are assumed to be fixed values.

Table 4 shows the input and consolidation uncertainties calcu-
lated for each material. Input uncertainties represent the standard
deviation in the output due to all uncertain inputs. Bed generation
uncertainty is calculated for 1 mm steel particles averaged across
eight powder beds, and the resulting standard deviation is
0.002 W/m K. As this is an order of magnitude less than the larg-
est source of uncertainty, bed generation uncertainty is neglected
for the remaining cases. The input and consolidation uncertainties
are added in quadrature to yield the values shown in Table 1 for

Table 1 Comparison of model predictions with experimental
data

Material Dp (mm) kmodel (W/m K) rmodel (W/m K) kexp (W/m K)

Copper 0.25 0.627 0.051 0.652 [29]
Copper 0.15 0.576 0.061 0.546 [29]
Lead 1.6 0.457 0.022 0.418 [4]
Steel 1.0 0.333 0.022 0.34 [15]
Steel 3.2 0.397 0.022 0.4–0.6 [4]

Table 2 Model input parameters

Material ks (W/m K) kg (W/m K) E (GPa) � q (g/cm3)

Steel 12.11–45.0 0.025–0.027 190–206 0.28 7.7
Copper 393–409 0.025–0.027 110–128 0.34 8.96
Lead 34.24–36.36 0.025–0.027 13.8–16 0.44 11.36

Table 3 Particle count and porosity

Material No. of particles Avg. porosity Std. dev.

Steel (1 mm) 1039 0.41 0.01
Steel (3.2 mm) 1090 0.418 0.009
Copper (0.25 mm) 1095 0.415 0.009
Copper (0.15 mm) 1091 0.416 0.008
Lead (1.6 mm) 1093 0.416 0.009

Table 4 Input and consolidation uncertainties

Material Dp (mm) rinput (W/m K) rcons (W/m K)

Copper 0.25 0.009 0.05
Copper 0.15 0.008 0.06
Lead 1.6 0.008 0.02
Steel 1.0 0.01 0.02
Steel 3.2 0.02 0.01
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the total uncertainty. As can be seen from Table 1, the model
shows good agreement with the experimental results as all but one
case is within one standard deviation of the predicted value and
all cases are within two.

Figure 5 shows the variation of the particle bed temperature
between the two fixed temperature walls for 1 mm steel particles.
Since particles are modeled using a lumped capacity method, no
temperature gradient is maintained in the particles. Thus, the tem-
perature variation in the bed is calculated using a binning method.
The domain is divided into ten bins based on location. All par-
ticles whose centers lie within a given bin have their temperatures
averaged together to give an average temperature for the bin.
These average temperatures are then plotted against bin location
to give a temperature profile. As can be seen, this bin-averaged
temperature profile is approximately linear.

3.2 Model Validation for Ceramic Powders. Model predic-
tions are also validated for ceramic particles against the data of
Slavin et al. [7] for packed alumina particles in helium. We find
that if the procedure described for metallic particles is used for ce-
ramic particles, predicted effective thermal conductivity deviates
from the measurements by 30%. This is likely due to either the
actual particles not being near-spherical, as is assumed in the
model, the importance of surface roughness, or the assumed
Hertzian contact mechanics not being a good approximation of
the actual contact behavior in ceramic beds. Therefore, calibration
parameters are introduced. The first parameter allows the contact
area between two particles to be adjusted by scaling Eq. (4). The
new contact radius is then given by the below equation:

Rc;e ¼ Ac
3kNli;jRe

4Ee

� �1=3

(13)

The second parameter is the minimum conduction distance, lmin,
which impacts Eqs. (7) and (8). It removes the singularity that
occurs when particle–fluid–particle conduction is calculated. For
metals, the default MFiX value of 1 lm works well, but for
ceramics it is used as a calibration parameter.

Taken together, Ac and lmin allow the relative importance of
particle–particle and particle–fluid–particle conduction to be
adjusted. These parameters are calibrated using the data of Slavin
et al. [7] for temperatures up to 550 K by means of a
Levenberg–Marquardt least squares algorithm [30]. The calcu-
lated parameter values are Ac ¼ 5:981 and lmin ¼ 2:419� 10�5 m.
Since Ac is larger than 1 and lmin is larger than 1 lm, this means
that particle–particle contact conduction plays a larger role in the

heat transfer than is predicted by the default MFiX–DEM model
parameters.

The calibrated model is then validated against the alumina data
for the remaining temperatures measured by Slavin et al. [7],
550–750 K. At the first temperature, 337 K, model input uncer-
tainty is estimated using the same method as for metals, with the
material properties of alumina given in Table 5. The calculated
standard deviation due to input uncertainty is 0.02 W/m K. Aver-
aging across different random powder bed structures produced a
bed generation uncertainty of 0.02 W/m K and averaging across
consolidated and unconsolidated beds yielded an average porosity
of 0.403 with a standard deviation of 0.008 and a consolidation
uncertainty of 0.5 W/m K. Therefore, since consolidation uncer-
tainties are an order of magnitude greater than other uncertainties,
only consolidation uncertainty is considered at all other tempera-
tures. The predicted conductivities and the experimental results
are shown in Fig. 6. As can be seen, the measurements fall within
the model uncertainties for all data points. Thus, the model can be
used to predict the thermal conductivity of ceramic powder beds
as well as metal ones, but calibration is necessary.

3.3 Model Predictions. The model is then used to asses the
effect of several parameters on the thermal conductivity of metal
powder beds. Monodisperse, 1 mm steel particles with a bed
height of 10 particle diameters, a bed temperature of 300 K
(ðrT3Dp=kgÞ ¼ 0:06), and properties given in Table 2 are used as
an example material in all the following investigations unless oth-
erwise indicated. Uncertain properties are taken to be exactly at
the mean value and uncertainties in the outputs are thus due
entirely to consolidation uncertainty.

3.3.1 Effect of Bed Temperature. First, the effect of bed tem-
perature is examined. In SLS builds using metal powders, temper-
atures greater than 1000 K are common and radiation heat transfer

Fig. 5 Particle bed temperature profile

Table 5 Alumina material properties

Property Value

ks (W/m K) 22.7–26.0
E (GPa) 344.8–409
kg (W/m K) 0.160–0.166
v 0.21
q (g/cm3) 3.95

Fig. 6 Comparison of model predictions with experimental
results of Slavin et al. [7]
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is expected to play a large role in the effective conductivity. In
order to assess this, the bed temperature is increased while all
other inputs except the gas conductivity are held constant. As gas
conductivity varies with temperature and most SLS builds are
done in air, the gas conductivity is set to be the conductivity of
air at the operating temperature. The relation kgðW=m � KÞ ¼
6:566 � 10�12T3 � 3:386 � 10�8T2 þ 9:426 � 10�5T þ 7:505
�10�4, obtained from curve fitting a cubic polynomial to the ther-
mal conductivity of air for temperatures ranging from 175 to
1900 K, is used. The effective thermal conductivity is then calcu-
lated for each case. At each temperature, the model is also run
with the radiation module switched off for comparison. The
results are shown in Fig. 7. Radiation begins to play a significant
role in the heat transfer for ratios of rT3Dp=kg greater than 0.5.
For the steel particles used in the model, this corresponds to a
temperature of about 1000 K. For particles on the order 0.1 mm,
this will be around 1300 K in air and for 0.01 mm particles this
will be almost 3000 K. Thus, radiation heat transfer will need to
be considered in the effective thermal conductivity when perform-
ing SLS with metals or other similarly high melting point materi-
als with particle sizes on the order 0.1 mm or above. For smaller
particles, the material will likely melt before radiation heat trans-
fer becomes significant. Additionally, even at higher temperatures,
the conductivity of the powder is one to two orders of magnitude
smaller than that of the solid, indicating that conduction is limited
by the contact between the particles and may thus be significantly
increased because of the parallel path provided by radiation at
higher temperatures.

3.3.2 Effect of Gas Conductivity. The model is then similarly
used to examine the effect of interstitial gas conductivity.
Although some SLS builds may be performed in a vacuum or near
vacuum, most commonly they are conducted in air or nitrogen at
atmospheric pressure. Thus, the gas conductivity contributes to
the overall effective thermal conductivity through the
particle–fluid–particle ( _Qpfp) conduction pathway. Particle–gas
interactions are neglected. All other model inputs are held con-
stant and the gas thermal conductivity is increased across a broad
range of values and the effective thermal conductivity calculated.
The thermal conductivity of the beds with the gas conductivity
switched off is also calculated for comparison. The results are
shown in Fig. 8. As can be seen, the conductivity of the gas begins
to have a significant effect around a kg=ks ratio of 0.001 and
becomes dominant as the ratio goes to 0.1. As most metals have a
thermal conductivity on the order of 10–100 W/m K and air and
nitrogen have conductivity on the order to 0.01 W/m K, gas

conductivity will have to be considered when determining the
effective thermal conductivity of SLS powder beds for some
cases.

3.3.3 Effect of Young’s Modulus. Next, the effect of the mate-
rial’s Young’s modulus is considered by varying the Young’s
modulus while holding all other model inputs constant. The
results are shown in Fig. 9. The effective thermal conductivity is
relatively insensitive to changes in Young’s modulus, even when
varied by several orders of magnitude. As most metals have a
Young’s modulus on the order of 100 GPa, variations in Young’s
modulus between materials would generally not have to be taken
into account when determining the effective thermal conductivity
of an SLS powder bed.

3.3.4 Effect of Emissivity. The effect of emissivity is also con-
sidered by varying the emissivity between 0.1 and 1 while holding
all other inputs constant. As emissivity only plays a role in the
radiation calculation, the model is run at a temperature of 1000 K,
which corresponds to an rT3Dp=kg of about 0.7, so that the impact
of emissivity variations can be seen. The results are shown in
Fig. 10. As can be seen, the effective thermal conductivity is also
not particularly sensitive to emissivity, even at temperatures

Fig. 7 Variation of effective thermal conductivity with
temperature

Fig. 8 Variation of effective thermal conductivity with gas
conductivity

Fig. 9 Variation of effective thermal conductivity with Young’s
modulus
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where radiation heat transfer is significant. This can be explained
by examining Eq. (9). Since view factors between particles that
can see each other are generally in the order of 0.1, varying emis-
sivity between 0.1 and 1.0 causes the radiative flux to vary at most
by a factor of 3. As radiative flux only accounts for about 30% of
the total flux at this temperature, the overall sensitivity to emissiv-
ity is low.

3.3.5 Effect of Bed Height. The effect of bed height is also
examined as the SLS machines use very thin layers during a part
build and thus it is possible for a thin single powder layer to be
spread on top of an already formed solid surface, resulting in a
thin powder bed. In the model, this is simulated by discarding all
particles which extend above a certain height in each powder bed
geometry and then by calculating the effective thermal conductiv-
ity while holding all other parameters constant. The results are
shown in Fig. 11. For very thin beds, on the order of a particle di-
ameter, the effective thermal conductivity can be almost cut in
half. However, this effect diminishes quickly and by bed heights
of 6–8 particle diameters the conductivity is within the uncertainty
of the infinitely deep bed value. Depending on the ratio of SLS
layer thickness to powder particle diameter, bed height may play a

role in the thermal conductivity of the powder for some
applications.

3.3.6 Effect of Polydispersity. Finally, the effect of powder
polydispersity is examined. In all previous simulations, the pow-
der particles were assumed to have a uniform diameter. For real
powder particles, however, this will generally not be the case and
there will be some variation of particle diameter within the pow-
der bed. In order to simulate the effect of powder polydispersity,
packings are generated with particles of different sizes. When a
particle is added to the domain, it is added at a random location
with a random diameter. Although the model can be used to simu-
late other distributions, Gaussian particle size distributions are
assumed as only one additional input parameter (standard devia-
tion) is introduced. The Gaussian distribution is split into nine
bins, each with a representative diameter and a fraction of the total
number of particles determined by the Gaussian. Particles entering
the domain are then assigned one of the nine possible diameters
based on the probability of each. Table 6 shows the average poros-
ity and standard deviation due to consolidation on the polydis-
perse powder beds.

Once the polydisperse beds are generated, the effective thermal
conductivity of each is calculated using the same method as for
monodisperse beds. The effect of polydispersity on the calculated
conductivity can be seen in Fig. 12, with the x-axis being the
standard deviation of the particle diameter distribution normalized
by the average particle diameter. There is about a 30% increase in
the effective conductivity across the investigated range of stand-
ard deviations. This is likely due to the fact that the smaller par-
ticles in the distribution are able to fill in the gaps in the packing
structure, leading to more contact between particles. Thus, poly-
dispersity can impact the conductivity of a powder bed, even for
small deviations, although the impacts are not as large as those
caused by gas conductivity or temperature. The uncertainties due
to consolidation also increase with increasing standard deviation

Fig. 10 Variation of effective thermal conductivity with
emissivity

Fig. 11 Variation of effective thermal conductivity with bed
height

Table 6 Porosity of polydisperse beds

r Avg. porosity Std. dev.

0.05Dp 0.423 0.007
0.125Dp 0.419 0.007
0.25Dp 0.421 0.007
0.375Dp 0.415 0.007
0.5Dp 0.428 0.007

Fig. 12 Variation of effective thermal conductivity with particle
size standard deviation

Journal of Heat Transfer AUGUST 2016, Vol. 138 / 082002-7

D
ow

nloaded from
 http://asm

edc.silverchair.com
/heattransfer/article-pdf/138/8/082002/6399489/ht_138_08_082002.pdf by guest on 20 M

arch 2024



as the variation in particle size adds extra degrees-of-freedom to
the powder bed layout.

3.4 Discussion and Empirical Relation. Of the parameters
investigated, effective thermal conductivity is most dependent on
temperature and gas conductivity. At low temperatures and low
gas conductivities, conduction is primarily through the
particle–particle path and thus is contact controlled. However, as
temperature increases or gas conductivity increases (either as a
result of temperature increase or due to the use of a higher con-
ducting gas), parallel paths are provided for heat transfer through
radiation and particle–fluid–particle conduction. Temperature and
gas conductivity, therefore, have the largest impact of the effec-
tive conductivity as they control the availability of these parallel
pathways. Thus, an empirical correlation is developed to estimate
the effective conductivity based on these quantities. A second-
order polynomial expansion is developed and the coefficients
determined using collocation points calculated from a Smolyak
sparse grid [28]. Temperature and gas conductivity are nondimen-
sionalized as h ¼ ðrT3Dp=ksÞ and j ¼ ðkg=ksÞ. The correlation is
then given below:

keff

ks
¼ �2:44h2 þ 15:2hjþ 3:57h� 25:2j2 þ 11:7jþ 0:001

(14)

The correlation is developed for a h range of 0.00035–0.023 (rep-
resenting 500 K–2000 K for 1 mm steel particles) and a j range of
0.00125–0.006. Material properties for monodisperse 1 mm steel
particles were used for all other inputs. However, since variations
in emissivity between 0.1 and 1.0 only lead to approximately an
8% change in conductivity even at high temperatures and varia-
tions in Young’s modulus across several orders of magnitude only
produce a 2% change in conductivity, the correlation should be
applicable to a wide range of metals. Polydispersity up to 0.5Dp

can lead to a change in conductivity of 30% and bed heights less
than 6Dp lead to 100% changes. Therefore, for highly polydis-
perse powders and very thin beds this correlation cannot be used
and the full model must be employed directly. Degree of bed con-
solidation is found to be the dominate uncertainty in calculating
the effective thermal conductivity, leading to a model uncertainty
of up to 11%.

4 Conclusions

A particle model of an SLS powder bed is developed and
implemented using MFiX–DEM. The existing MFiX–DEM heat
transfer modules are enhanced by the addition of a ray-tracing
technique for particle–particle and particle–wall radiation. The
model is used to calculate thermal conductivity of metal powder
beds. Quantification of uncertainties in model inputs as well as
bed layout and consolidation is included. The DEM model neces-
sarily assumes beds made up of smooth, spherical particles. For
metal powder beds, the assumption is good and calculated results
are in good agreement with experimental data without the need
for calibration. For ceramics, this is not the case, and calibration
is necessary, but good agreement with experimental results is
achieved after calibration of contact conduction and
particle–fluid–particle models. The variation of the effective ther-
mal conductivity with temperature, Young’s modulus, gas con-
ductivity, emissivity, finite bed depth, and polydispersity is
calculated. As temperature and gas conductivity are found to have
the most impact, a correlation is proposed to calculate the effec-
tive thermal conductivity from these two quantities for metal beds
in air. These results have the potential to aid in the quantification
of uncertainties in continuum SLS models by providing the meth-
ods to calculate effective conductivity in a variety of scenarios im-
portant in SLS where other methods of estimating conductivity
cannot be applied. However, care should be taken when applying

the model to beds known to consist of highly nonspherical or very
rough particles as results may not be accurate and calibration with
experimental measurements may be required.
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Nomenclature

Ac ¼ contact area correction parameter
Ai ¼ particle surface area
cp ¼ specific heat

CAD ¼ computer-aided design
Dp ¼ particle diameter

DEM ¼ discrete element model
E ¼ Young’s modulus

f(x,y,z,t) ¼ laser heat source
Fi!j ¼ view factor from particle i to j

g ¼ gravitational constant 9.81 m/s2

k ¼ thermal conductivity
kg ¼ gas thermal conductivity
ks ¼ solid thermal conductivity
kN ¼ spring constant for DEM spring–dashpot model

lcond ¼ conduction distance for particle–fluid–particle
conduction

li,j ¼ distance between the centers of particles i and j
lmin ¼ minimum conduction distance for

particle–fluid–particle conduction
_Qpfp ¼ particle–fluid–particle heat flow

_Qr ¼ particle–particle heat flow
_Qrad ¼ radiation heat flow
Rc ¼ particle–particle contact radius

Rc;e ¼ correct particle–particle contact radius
Re ¼ effective radius
Rf ¼ fluid radius for particle–fluid–particle conduction
Ri ¼ radius of particle i

SLS ¼ selective laser sintering
T ¼ temperature
e ¼ emissivity
r ¼ standard deviation
r ¼ Stefan–Boltzmann constant
� ¼ Poisson’s ratio
q ¼ density
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