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Quantitative Three-Dimensional
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Infrared thermal imaging based on active thermal excitations has been widely used for
nondestructive evaluation (NDE) of materials. While the experimental systems have
remained essentially the same during the last few decades, development of advanced
data-processing methods has significantly improved the capabilities of this technology.
However, many limitations still exist. One fundamental limitation is the requirement, ei-
ther explicitly or implicitly, of the tested material to be homogeneous such that detected
thermal contrasts may be used to determine an average material property or attributed to
flaws. In this paper, a new thermal tomography (TT) method is introduced, which for the
first time can evaluate heterogeneous materials by directly imaging their thermal-
property variations with space. It utilizes one-sided flash thermal-imaging data to con-
struct the three-dimensional (3D) distribution of thermal effusivity in the entire volume of
a test sample. Theoretical analyses for single and multilayer material systems were con-
ducted to validate its formulation and to demonstrate its performance. Experimental
results for a ceramic composite plate and a thermal barrier coating (TBC) sample are
also presented. It was shown that thermal diffusion is the primary factor that degrades
the spatial resolution with depth for TT; the spatial resolutions in the lateral and axial
directions were quantitatively evaluated. [DOI: 10.1115/1.4033998]

Keywords: thermal tomography, three-dimensional imaging, pulsed thermal imaging,
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Introduction

Infrared thermal imaging (or thermography) based on active
thermal excitations has been widely used for NDE of engineering
materials and for medical imaging. Two of the most used technol-
ogies are pulsed (or flash) and modulated (or lock-in) thermal
imaging, and many variations of these exist. Active thermal imag-
ing applies an external thermal excitation on a sample surface and
analyzes the surface temperature response acquired by an infrared
camera. Although infrared sensing technology has been improved
greatly and built into state-of-the-art infrared cameras, thermal-
imaging experimental systems have remained essentially the same
over the last few decades. The advancement in thermal-imaging
technologies has been represented by the development of
advanced data-processing methods that can more accurately mea-
sure material properties or detect defects.

A thermal-imaging system may be configured in a “reflection”
mode where both the heat source and infrared camera are placed
on the same side of a sample (it should be noted that in this con-
figuration, the infrared camera does not actually detect the internal
thermal reflection but only the thermal emission from the front
surface), or in the transmission mode where the heat source and
infrared camera are on the opposite side. Data-processing methods
for these modes are different. Because the thermal excitation is
typically applied on the entire surface of a test sample, which gen-
erates a nearly one-dimensional (1D) heat propagation into the

depth of the material, data-processing methods are almost all
based on 1D theories or algorithms. The transmission mode has
been mostly used by pulsed thermal imaging for the purpose of
determining a property, usually the thermal diffusivity, with a
known thickness of the material. The data-processing methods are
normally based on the theory of Parker et al. [1] for single-layer
materials and its extension for multilayer materials [2,3]. The fun-
damental assumption in these theories is that the material is homo-
geneous throughout the thickness or in each layer of a multilayer
material. Transmission thermal imaging can also be used to detect
defects and estimate defect characteristics (such as delamination
gap width) if the base material is considered to be homogeneous
[4].

One-sided reflection-based systems are used in most thermal-
imaging applications. Their advantages include simple system
setup and capability to determine material variations or defects at
different depths. Data-processing methods have been developed
for measuring material properties and for detecting defects. In
modulated thermal imaging, the amplitude decay (with depth) and
the phase shift of measured thermal waves are related to a material
property (thermal diffusivity) and the excitation frequency. These
relationships can be used to predict thickness-averaged material
properties [5] or defect characteristics [6]. In pulsed thermal imag-
ing, which is the most widely used technique because of its fast
test speed, several data-processing methods are available. For ma-
terial property measurement, regression methods based on theoret-
ical solutions for homogeneous materials are usually used to
model experimental data, and thermal properties of single- or mul-
tilayer materials can be determined [4,7]. For defect detection and
characterization, data-processing methods [8–10] are designed to
extract and/or enhance a thermal contrast, which can be “positive”
or “negative” depending on the characteristics of the base and
defect materials. The thermal contrast may be attributed to a
defect only when the base material is considered homogeneous.
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The need for contrast enhancement is critical especially when
detecting deeper defects because the contrast decreases rapidly
with defect depth (inverse third power) [11].

The quantitative data that can be derived from current thermal-
imaging methods are usually the thickness-averaged thermal dif-
fusivity (a) and the defect depth (L) (or sample thickness). They
are determined from a fundamental relationship, tc / L2=a or its
equivalent, that exists in pulsed thermal imaging [12], where tc is
a characteristic thermal-transient time. While tc can be measured
directly from experiment, one of the two parameters (a and L) has
to be known in order to determine the other. These methods are
therefore applicable only to homogeneous materials, and only one
parameter can be determined from each experiment.

For quantitative analysis of heterogeneous materials, the distri-
bution of a material property within the 3D volume is required,
which is usually achieved by a tomography method. Tomography,
by definition [13], is a method to produce 3D image of the internal
structures of a 3D object through the use of a penetrating wave (or
energy). It therefore may simultaneously determine both material
property and its 3D spatial distribution. A standard tomography
method is the X-ray computed tomography (CT), which utilizes
the X-ray transmission data through the object from multiple
directions (projections) to reconstruct a transmission parameter
(related to material property) distribution within the spatial do-
main (2D or 3D) [14]. Transmission tomography methods based
on similar reconstruction principles have been developed in many
fields, including optical [15], ultrasonic [16], and thermal [17,18].
These methods are generally not as mature and robust as X-ray
CT. For the thermal methods [17,18], for example, only theoreti-
cal simulations were demonstrated because of the difficulty to per-
form the experiments. Besides transmission tomography, one-
sided, reflection-based tomography methods have also been devel-
oped. Because reflection data contain information for both the
magnitude of a material parameter (or discontinuity) as well as
the distance of the reflection site within the object (through time
of flight relationship), collected reflection data may be used
directly to construct a 3D image of the object without the need of
multiple-projection measurements as in the transmission tomogra-
phy. Reflection-based tomography methods include confocal mi-
croscopy [19], optical coherence tomography [19], and ultrasonic
scanning [14]. However, a tomography method that can produce a
3D material property distribution based on one-sided, pulsed ther-
mal imaging has not been developed.

This paper introduces a new data-processing method for quanti-
tative 3D thermal imaging: the TT method. It uses one-sided
pulsed thermal-imaging data to construct the spatial distribution
of thermal effusivity within a sample volume. In the following
sections, data acquisition and analysis for pulsed thermal imaging
is briefly reviewed first. Basic TT formulation is then derived. The
TT performance for resolving material properties and spatial
dimensions is validated based on theoretical analyses for

multilayer materials. Experimental results are presented to dem-
onstrate data analysis procedure and data interpretation for real
samples. Advantages and issues related to the current algorithm
are then discussed.

Pulsed Thermal Imaging

Pulsed thermal imaging is based on monitoring the temperature
decay on a sample surface after it is applied with a pulsed thermal
energy that is gradually transferred inside the sample. The test
setup for one-sided pulsed thermal imaging is illustrated in Fig. 1.
The infrared camera used in this study is Phoenix (FLIR Systems,
Inc., Wilsonville, OR), which contains a cooled focal plane array
of 320� 256 pixels that are sensitive in the wavelength range of
3–5 lm with a noise equivalent temperature difference of <25
mK. The flash system is Balcar Source ASYM 6400 (Balcar,
France) that has a maximum output power of 6400 J per flash with
a characteristic flash duration of �2 ms. Pulse thermal imaging
may be used to examine all the solid materials that have reasona-
ble emissivity (say >0.5) or can be applied with a high-emissivity
coating on their exposed surface, and the maximum imaging spa-
tial resolution on the surface may potentially reach the infrared
wavelength in the 5 lm range with currently available commercial
optics (although spatial resolution may degrade rapidly with depth
due to thermal diffusion as explained later). When pulsed thermal
energy is applied (by a flash lamp), a thin layer of material on the
surface is heated instantaneously to a high temperature. Heat
transfer then takes place from the heated surface to the interior of
the sample, resulting in a continuous decrease of the surface tem-
perature. The infrared camera, with proper calibration, captures
the surface temperature evolution during the entire thermal-
transient period. The acquired thermal-imaging data therefore
consist of a series of 2D images of the sample’s surface tempera-
ture at consecutive time instants. This data set can be expressed as
T(x, y, t), where T is the surface temperature, (x, y) is the surface
spatial coordinate, and t is the time. It is obvious that T(x, y, t) is a
3D data set in which the time t domain is related to the depth z do-
main within the test sample.

In pulsed thermal imaging, the thermal excitation applied by
flash lamps is typically uniform over a large surface area, which
results in a predominantly 1D heat transfer in the depth direction.
Therefore, most data-processing methods perform 1D analysis in
the time domain, based on theoretical heat-transfer models, to
retrieve depth-related information such as variation of material
properties or presence of defects below each surface position.
Because thermal-imaging data already have 2D spatial resolution
in (x, y), an 1D analysis for all surface the positions completes the
evaluation of the entire sample volume (x, y, z(t)).

The theoretical models used in thermal-imaging analyses are
usually based on the solutions of the 1D heat conduction equation

Fig. 1 Schematic of pulsed thermal-imaging test setup
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where T(z, t) is the temperature, q is the density, c is the specific
heat, k is the thermal conductivity, t is the time, and z is a coordi-
nate in the depth direction (z¼ 0 is the surface that receives flash
heating). The initial temperature is constant (assumed to be
T¼ 0), and the boundaries for all the surfaces are insulated. All
the material properties are assumed constant (in each material
layer).

Two solutions of Eq. (1) are particularly useful for thermal
imaging (and for the development of the TT method): one for a
semi-infinite material and the other for a plate with a constant
thickness. Under ideal pulsed thermal-imaging conditions, i.e., the
pulsed heating is instantaneous and absorbed within a surface
layer of negligible thickness, the solution of Eq. (1) for a semi-
infinite material (0 � z <1) is [20]

T z; tð Þ ¼
Q

qckptð Þ1=2
exp

�z2

4at

� �
(2)

where Q is the pulsed energy absorbed on the surface z¼ 0 at
t¼ 0, and a (¼ k/qc) is the thermal diffusivity. The solution of Eq.
(1) for a finite-thickness plate (0 � z � L) is [1]

T z ¼ 0; tð Þ ¼ Q

qcL
1þ 2

X1
n¼1

exp � n2p2

L2
at

� �" #
(3)

In Eq. (2), the (combined) material property (qck)1/2 is the ther-
mal effusivity e. Equation (2) can thus be rewritten as

e ¼ Q

T z ¼ 0; tð Þ
ffiffiffiffi
pt
p (2a)

For heterogeneous materials, thermal effusivity e is a function of
depth z, i.e., e(z). For this general case, an “apparent thermal
effusivity” [20], ea(t), is defined as

ea tð Þ ¼ Q

T tð Þ
ffiffiffiffi
pt
p (4)

where TðtÞ ¼ Tðz ¼ 0; tÞ is the surface temperature at surface
position (x,y) that is measured by an infrared detector (a pixel in
an infrared imager array) during a pulsed thermal-imaging test.
Equation (4), therefore, converts the measured surface tempera-
ture into the apparent thermal effusivity ea(t) which, in general,
differs from the material’s thermal effusivity e. For semi-infinite
homogeneous materials with constant effusivity e, ea(t) is a con-
stant and equals to e, while for heterogeneous materials with vari-
able material effusivity along depth e(z), ea(t) is a function of time
(and x,y) and differs from the spatial function e(z).

TT Method

The purpose of the TT method is to reconstruct the measured
surface temperature in the time domain into the material’s thermal
effusivity in the spatial domain. As stated above, this is equivalent
as to determining e(z) from ea(t). To achieve this, we need to es-
tablish the relationship between the heat-propagation time t and
depth z and to construct a formulation between ea(t(z)) and e(z).

TT Formulation. It is well known that heat transfer is a diffu-
sion process that does not exhibit a characteristic speed like that
in a wave-propagation process. However, because thermal energy
is indeed propagated during heat transfer, there should exist a rela-
tionship between the propagation distance of an equivalent ther-
mal “front” and time. In modulated thermal imaging, for example,

the time taken for the thermal-wave crest to travel a depth z from
surface (z¼ 0) was found to be tpeak¼ z2/2a, which was deter-
mined by differentiating a thermal-wave solution with respect to
time and equating to zero [21]. In pulsed thermal imaging, a corre-
lation also exists between a characteristic time (tc) in surface tem-
perature evolution and the depth of a discontinuity (L): tc / L2=a.
This correlation has been the foundation used in all the empirical
models to determine defect depth. Although several correlations
were derived (with different correlation constants) [12], a generic
relationship was found to be tc¼ L2/(pa), which was derived from
Eq. (3) under the constraint d2(lnT)/d(lnt)2¼ 0 [12]. This deriva-
tion reflects the fact that the surface temperature derivative in the
log scale, d(lnT)/d(lnt), is a constant when heat is propagating
within a uniform material (see Eq. (2a)) and it changes only when
an internal interface or a back surface is approached so the time tc
is directly related to the interface depth. This characteristic time tc
may be considered as the time taken for the pulsed thermal front
to reach depth L. The thermal front may be defined based on the
peak temperature gradient �@T/@z within the material. From Eq.
(2), it can be shown that the peak is located at zp¼ (2at)1/2

obtained by setting @2T/@z2¼ 0 (it propagates at same speed as the
modulated waves mentioned above). By combining tc and zp, we
may define the pulsed thermal front location at (p/2)1/2zp, which is
slightly ahead of the peak temperature gradient location zp. In the
TT method, the characteristic relationship is generalized to be valid
for all the depths when thermal diffusivity a is a constant [22]

z ¼ ðpatÞ1=2
(5)

When thermal diffusivity a is not a constant but a function of
depth z, Eq. (5) may be replaced by

t ¼
ðz

0

2z

pa
dz (5a)

Equation (5) (and (5a)) is considered the general relationship
between depth z and time t for the thermal-front-propagation in a
solid during pulsed thermal imaging. It indicates that the thermal-
front-propagation “speed” dz/dt¼ (ap/4t)1/2 is not a constant but
decreases with time. This result therefore explains the difficulty in
using thermal imaging to probe deep materials, because of the
gradual reduction of the thermal-front-propagation speed with
depth, in addition to a drastic contrast reduction [11]. The material
parameter that determines the thermal-front-propagation speed is
the thermal diffusivity a.

The final step in the development of the TT method is to con-
struct a formulation between the measured apparent effusivity
ea(t) and the (unknown) material effusivity e(z). Because ea(t) is
determined from measured surface temperature, which results
from the interaction between the heat propagation and the material
property e(z), the relationship between ea(t) and e(z) should be in
a convolution form. This situation is similar to that in electronic
signal measurement, where the measured signal s(t) is related
to the true signal u(t) by a convolution formulation:
sðtÞ ¼

Ð
vðt� sÞuðsÞds, with v(t) as the response function of

the measurement instrument [23]. While an exact formulation
for thermal imaging is difficult, if possible, to be derived
directly from first principles, an approximate formulation has
been found [22]

eaðtÞ ¼
ðz

0

z�1eðfÞdf (6)

It is apparent that the term z�1 represents the response function in
conventional convolution formulation. Equation (6) has a closed-
form solution for e(z)

e zð Þ ¼
d zea tð Þ½ �

dz
(7)

Journal of Heat Transfer NOVEMBER 2016, Vol. 138 / 112004-3

D
ow

nloaded from
 http://asm

edc.silverchair.com
/heattransfer/article-pdf/138/11/112004/6399394/ht_138_11_112004.pdf by guest on 10 April 2024



However, when diffusivity a varies with depth, Eq. (7) is not
directly usable because z is an implicit function of t as shown in
Eq. (5a). Under this condition, Eq. (7) is replaced by

e tð Þ ¼ d
ffiffi
t
p

ea tð Þ
� �

d
ffiffi
t
p (7a)

and this time function e(t) is converted to the depth function e(z)
by using Eq. (5a). An example for evaluating Eq. (5a) for layered
materials is presented later.

Equations (4)–(7) are the basic formulation for the TT method.
Equations (5) and (7) are used when material’s thermal diffusivity
a is a constant, whereas Eqs. (5a) and (7a) are used when diffusiv-
ity is a known function of depth. These equations allow for effi-
cient reconstruction of the thermal effusivity e(z) distribution
(profile) along the material depth z from the measured surface
temperature T(t) at each surface position. When this process is
repeated for all the surface positions (x,y), the TT method converts
the measured surface temperature T(x,y,t) into a 3D distribution of
thermal effusivity within the sample volume e(x,y,z). For com-
pleteness, this general formulation is

e x; y; zð Þ ¼
d

dz

zQ

T x; y; tð Þ
ffiffiffiffi
pt
p

" #
(7b)

where z and t are related by Eq. (5). The absorbed heat Q may be
determined in two ways. First, a calibration sample with known
thermal properties may be placed at the same sample location to
directly measure Q following the procedure as described in Ref.
[1]. Second, because material property may be known at some
depths, say at the surface, then the surface effusivity e(z¼ 0) is
known and can be used to calculate Q (the same procedure may
be used if the material property is known at a particular depth).
The second approach is more convenient to use in practice. In all
the applications, the surface optical emissivity needs to be deter-
mined prior to the surface temperature measurement.

Because the TT formulation was not derived from first princi-
ples, it needs to be validated for typical material systems eval-
uated by thermal imaging. One of the most difficult heterogeneity
conditions for thermal imaging is layered materials, which have
abrupt property changes at interfaces. In the following, we will
first examine the general properties of the TT formulation for one-
and two-layer materials. These properties include the conservation
of total effusivity and the asymptotic behavior of the effusivity so-
lution. Detailed evaluation of the TT performance will be pre-
sented in the next section (Performance of TT Method).

For a one-layer material, the theoretical solution for the semi-
infinite condition is shown in Eq. (2) and for the finite-thickness
condition in Eq. (3). For a two-layer material, the surface tempera-
ture solution for the semi-infinite case is [21]

T tð Þ ¼ Q

e1

ffiffiffiffi
pt
p 1þ 2

X1
n¼1

Cn exp � n2L2
1

a1t

� �" #
(8)

where C¼ (e1� e2)/(e1þ e2), and subscript 1 is for the layer near
surface and 2 for that in deeper depth. The surface temperature so-
lution for a finite-thickness two-layer material is [20]

T tð Þ ¼ Q

q1c1L1 þ q2c2L2

1þ S tð Þ½ � (9)

where S(t) is a summation expression of exponential functions of
time t similar to those in Eq. (3) but with complex eigenfunction
coefficients; details of this summation are not needed in this study.

Total Effusivity Conservation. We first examine the total
effusivity conservation for finite-thickness one- and two-layer

materials. The total effusivity E of a material system is defined as:
E ¼

Ð1
0

eðfÞdf. From Eqs. (4)–(6), we have

E ¼
ð1

0

e fð Þdf ¼ limz!1 zea tð Þ½ � ¼ limt!1

ffiffiffi
a
p

Q

T tð Þ (10)

For a one-layer material with constant material properties, the
surface temperature is expressed in Eq. (3). It is apparent that
TðtÞ ! Q=ðqcLÞ as t!1. Therefore, E¼ eL, the correct total
effusivity for the one-layer material system.

For a two-layer material system with the surface temperature
expression in Eq. (9), the total effusivity E in general cannot be
determined directly from Eq. (10) because the thermal diffusivity
in the two layers may be different. Here, we only examine a sim-
plified case of equal diffusivity for both layers, i.e., a¼ a1¼ a2.
Under this condition, Eq. (9) leads to TðtÞ ! Q=ðq1c1L1 þ
q2c2L2Þ as t!1; therefore, E¼ e1L1þ e2L2 from Eq. (10), the
correct total effusivity for the two-layer material system.

Asymptotic Thermal Effusivities. The effusivity solution e(z)
at two asymptotic positions z¼ 0 and1 (or t¼ 0 and1) is exam-
ined for one- and two-layer material systems. The correct asymp-
totic values for e(z) are listed in Table 1. To facilitate the
derivation, the following effusivity expression is used:

e zð Þ ¼ d

d
ffiffi
t
p Qffiffiffi

p
p

T tð Þ

� �
(11)

For a semi-infinite one-layer material with surface temperature
solution in Eq. (2), it is trivial to show that e(z)¼ e, a constant at
all depths.

For a finite-thickness one-layer material with solution in Eq.
(3), because T(t) approaches a constant as t!1, Eq. (11) then
leads to eð1Þ ¼ 0. At z¼ 0, we note

limt!0

X1
n¼0

exp �p2at

L2
n2

� �
¼ limt!0

X1
n¼0

Dn exp � p2at

L2
n2

� �

¼ L

2
ffiffiffiffiffiffiffi
pat
p erf 1ð Þ (12)

where Dn¼ 1 and erf is the error function with erfð1Þ ¼ 1. It
therefore follows from Eqs. (3), (11), and (12) that e(0)¼ e.

For a semi-infinite two-layer material with solution in Eq. (8),
it is apparent that TðtÞ ! Q=ðe1

ffiffiffiffi
pt
p
Þ as t! 0; Eq. (11) therefore

leads to e(0)¼ e1. As t!1, it is noted that all the exponential
terms within the summation become unity. Using the equationP1

n¼0 Cn ¼ ð1� CÞ�1
, it then can be shown that TðtÞ !

Q=ðe2

ffiffiffiffi
pt
p
Þ as t!1; therefore eð1Þ ¼ e2.

For a finite-thickness two-layer material with solution in Eq.
(9), because T(t) approaches a constant as t!1, Eq. (11) leads
to eð1Þ ¼ 0. At z¼ 0, however, it is difficult to evaluate the sum-
mation term S(t) to verify e(0)¼ e1. Instead, numerical solutions
presented in the next section (Performance of TT Method) will
demonstrate this result.

In the above analyses, we have shown that the TT formulation
does satisfy the total effusivity conservation as well as determine
correct effusivity values at the asymptotic positions z¼ 0 and 1
for one- and two-layer material systems. The analyses can be

Table 1 List of correct asymptotic e(z) values for various mate-
rial systems

Material system e(0) eð1Þ

Semi-infinite one-layer e e
Finite one-layer e 0
Semi-infinite two-layer e1 e2

Finite two-layer e1 0
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easily extended to material systems with more than two layers.
These results therefore serve as a validation of the TT formulation
for general applications. The performance of the TT formulation
to predict detailed effusivity depth distribution is presented in the
next section (Performance of TT Method).

Performance of TT Method

The performance of the TT method was evaluated by recon-
struction of thermal effusivity depth profiles of multilayer materi-
als that are common in engineering structures. These material
systems have abrupt changes in material properties. The challenge
is to resolve both the abrupt changes at interfaces and the constant
thermal properties within all the layers. Most heterogeneous mate-
rials exhibit only gradual property variation along depth, so the
performance and accuracy of the TT method would be better for
typical heterogeneous materials than for multilayer materials. In
the following, examples for one-, two-, and three-layer materials
are presented. Table 2 lists the three sets of material properties,
identified as materials nos. 1, 2, and 3, that we used.

For a single-layer material, the surface temperature T(t) in
Eq. (3) can be used to calculate the thermal effusivity profile e(z)
from Eqs. (4)–(7). For this calculation, we assumed that the mate-
rial is no. 1 with a thickness of 10 mm. Because the front surface,
which is an interface (e(0þ)¼ e and e(0�)¼ 0), is naturally
resolved and the material property is constant, the TT

performance is evaluated on the basis of the depth resolution at
the back surface. Figure 2(a) plots the material effusivity profile
e(z) predicted by the TT method. The real material effusivity dis-
tribution used in the simulation is also plotted in the figure. To
facilitate the visualization of the result, the material system is con-
sidered as a plate, so that a cross-sectional image (e.g., in the x–z
plane) of the material’s thermal effusivity can be displayed, as
shown in Fig. 2(b). It is seen that the predicted effusivity is equal
to the real effusivity in shallow depths, but deviates from the real
at depths near the back surface interface at z¼ 10 mm. The exact
depth of the back surface is located at 46% of the material effusiv-
ity in the predicted profile. The reduced resolution (or blurring) at
the back surface is due to the thermal diffusion to be discussed
later. Nevertheless, the predicted effusivity profile does follow the
sharp boundary and reduces to zero at depths z> 16 mm
(approaching the asymptotic solution eð1Þ ¼ 0). In addition, the
area under the predicted effusivity profile is equal to the area of
the real effusivity profile, because of the conservation of total
effusivity.

For a two-layer system, we assumed that the first layer contains
material no. 1 with a thickness of 1 mm, and the second layer con-
tains material no. 2 with a thickness of 10 mm. The theoretical so-
lution of the surface temperature response under pulsed thermal-
imaging condition can be obtained from an analytical solution
(Eq. (9)) or a numerical method [7]. Figure 3 shows the predicted
material effusivity profile and cross section image as compared

Table 2 List of thermal properties for three postulated materials used in examples

Material no. Conductivity, k (W/m K) Heat capacity, qc (J/m3 K) Diffusivity, a (mm2/s) Effusivity, e (J/m2 K s1/2)

1 2 2� 106 1 2000
2 1 1� 106 1 1000
3 21/2 2�1/2� 106 2 1000

Fig. 2 Predicted and exact material effusivity (a) profiles and (b) cross section images as a
function of depth for a single-layer system

Fig. 3 Predicted and exact material effusivity (a) profiles and (b) cross section images as a
function of depth for a two-layer system
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with those of the real material effusivity for the two-layer system.
It is evident that the predicted effusivity values in both layers are
well reproduced. Again, the predicted profile exhibits diffusion
around sharp boundaries, which is more apparent at greater
depths. The diffusion also causes an overshoot of the predicted
effusivity change between the layers and a delayed recovery of
effusivity in the second layer, although the exact effusivity of the
second layer is obtained if the thickness of the second layer is
>20 mm [22].

For the three-layer system, we assumed that the first and third
layers consist of material No. 1, the second layer consists of mate-
rial No. 2, and the thickness for the layers is 1, 5, and 30 mm,
respectively. The predicted material effusivity profile and cross
section image are shown in Fig. 4. Again, the predicted effusivity
profile reproduces well the exact distribution, although with
reduced resolution and some deviation of effusivity changes
around interfaces due to thermal diffusion. The exact effusivity of
the third layer is recovered if its thickness is >60 mm [22]. This
example can be considered as a simulation for the detection of an
embedded material (the second layer) within a uniform material
(layers 1 and 3).

The theoretical results presented in Figs. 2–4 demonstrate that
the TT method is robust and stable for analyzing single and multi-
layer materials. Both material property and depth of the layers can
be determined simultaneously. These results also confirm the con-
servation of total effusivity and accurate prediction of layer effu-
sivity values under asymptotic conditions.

The above examples are for layered materials with a constant
thermal diffusivity. To illustrate the effect of diffusivity variation,
we repeat the two- and three-layer simulations by replacing the
material no. 2 with no. 3, which has a higher thermal diffusivity
as listed in Table 2. While the thermal effusivity time profile e(t)
is readily constructed from Eq. (7a), the relationship between t
and z can be derived from Eq. (5a) for a general multilayer mate-
rial with the layer number N� 2

t ¼ z2

pa1

; for 0 < t < t1 (13a)

t ¼
Xn�1

i¼1

z2
i

p
1

ai
� 1

aiþ1

� �
þ z2

pan
;

for tn�1 < t < tn; n ¼ 2; :::;N and t > tN (13b)

where

t1 ¼
z2

1

pa1

(14a)

tn ¼
Xn�1

i¼1

z2
i

p
1

ai
� 1

aiþ1

� �
þ z2

n

pan
; n ¼ 2; :::;N (14b)

Figure 5 shows a comparison of the predicted thermal effusivity
depth profiles e(z) for two- and three-layer materials with matched
or unmatched thermal diffusivities. It is evident that all the pre-
dicted profiles are good approximations of the respective exact
profiles shown in Figs. 3(a) and 4(a). The shape and magnitude of
the predicted profiles are dominated by the material’s thermal
effusivity while the depth dimension is controlled by thermal dif-
fusivity. Therefore, it is necessary to know the thermal diffusiv-
ities of all the material layers when constructing 3D spatial
thermal effusivity images from experimental data. If the diffusiv-
ities are unknown so thermal effusivity images based on e(t) from
Eq. (7a) are constructed, we may still estimate the material’s ther-
mal effusivities but with a lesser certainty to layer thicknesses
because t1/2 may no longer be proportional to depth z for layers 2
and beyond.

Experimental Results

TT can be used in all the material-characterization applications
that currently employ pulsed thermal imaging. In this section, ex-
perimental results are presented for two material systems: a ce-
ramic matrix composite (CMC) plate and a TBC sample.

In practical applications, the constructed 3D effusivity e(x,y,z)
is normally presented as 100 2D effusivity images (slices) at
z¼ constant planes: e(x,y,z1), e(x,y,z2),…, e(x,y,z100). The depth as
well as the thickness (Dz) of each slice can be determined from
Eq. (5). However, because the thermal diffusivity a is usually
unknown and may vary with depth, each slice is therefore con-
structed based on a fixed time scale, i.e., Dz� (texp)1/2/100, where
texp is the test duration. As a result, the thickness of all the slices
is the same for a homogeneous material. The thickness of the sli-
ces for heterogeneous materials is generally different but can be

Fig. 4 Predicted and exact material effusivity (a) profiles and (b) cross section images as a
function of depth for a three-layer system

Fig. 5 Predicted thermal effusivity e(z) profiles for two- and
three-layer material systems (e.g., 1 and 2 indicate that the first-
and second-layer materials are Nos. 1 and 2, respectively) and a
time t1/2 profile for a three-layer system
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determined from Eq. (5) if the local thermal diffusivity is known.
In multilayer materials, for example, the thermal diffusivity in
each layer is a constant, so the thickness of all the slices in each
layer is the same.

CMC. CMCs are advanced materials being developed for high-
temperature structural applications, such as the thermal protection
system in spacecrafts and components in turbine engines [4,24].
The critical flaw in CMCs is delamination. Pulsed thermal imag-
ing is a preferred NDE method to detect delaminations in CMCs.
The detection sensitivity as a function of delamination size and
depth is normally determined by using calibration plate samples
with machined flat-bottom holes at the back surface to simulate
the delaminations. The CMC plate used in this study has seven
machined flat-bottom holes of various diameters and depths from
the back surface, as illustrated in Fig. 6. The depth of the holes in

Fig. 6 is the distance from the hole bottoms to the front flat surface
where thermal-imaging data were acquired. The plate dimensions
are 5 cm� 5 cm, and its thickness varies from 2.3 to 2.7 mm. The
composite plate was not completely densified, so it contained
many small cracks and distributed porosities within its interior.

Pulsed thermal-imaging data (surface temperature images)
were obtained from the front flat surface of the plate by using the
system illustrated in Fig. 1. The imaging rate was 516 Hz, with a
total of 3000 frames taken for a test duration of 5.8 s. Each image
has 256� 200 pixels which correspond to a surface area resolu-
tion of 0.25� 0.25 mm2 per pixel, and the maximum temperature
rise during the flash period was �40 K. Figure 7 shows two typical
thermal images taken at 0.01 and 0.6 s after the flash. Although all
the holes can be detected from the latter thermal image, the ther-
mal contrast of the deeper holes is weak and could easily become
unidentifiable. It is also noted that there are many large shallow
defects located at the lower-left corner of this sample.

The 3D distribution of the thermal effusivity for this CMC plate
was constructed using Eqs. (4)–(7). Based on the experimental pa-
rameters and material properties, each plane slice for this plate
has a thickness of 0.042 mm. The 3D effusivity distribution was
then sliced in plane and vertical cross sections to display the inter-
nal structures of the sample. Figure 8 shows plane slices at four
depths below the front surface. All the flat-bottom holes are visi-
ble; they show darker grayscale because the material within the
holes at those planes is air, which has a very low-effusivity value.
These holes usually become visible at slightly shallower depths
than their actual depths due to the thermal diffusion effect men-
tioned earlier; the exact depths can be located when the effusivity
value drops to 46% of the base material effusivity (see Fig. 2(a)).
These plane slices also reveal many defects (with lower effusiv-
ity). The small distributed defects are mostly voids due to incom-
plete densification of the plate. The large defects located at the
lower-left corner are observed in the shallow slices at z¼ 0.26 and
0.59 mm; they produced artifacts (overshoots) in deeper slices
(z¼ 0.87 and 1.2 mm) due to thermal diffusion effect.

Figure 9 shows the predicted cross-sectional effusivity images
and the corresponding cross-sectional diagrams along the two hor-
izontal lines indicated in Fig. 6. These cross-sectional images are
the first of their kind being produced by a thermal-imaging
method, and they make data interpretation and analysis much eas-
ier. It is evident that the depths of all the flat-bottom holes as well
as the back surface of the plate are well resolved (note that all the
holes have an inclined bottom surface due to a machining error).
In addition, the depth distribution of many small defects is
resolved, especially in the shallow depths. These cross section
images also reveal the thermal diffusion effects in both depth
(axial) and lateral directions: the lateral diffusion caused an appa-
rent expansion of the hole diameter along depth; the depth diffu-
sion is represented by the increased blurring of the back surface of
deeper holes and the plate. The TT data in Fig. 9 can be used to
quantitatively evaluate these effects.

Fig. 6 Diagram and hole dimensions of a flat-bottom-hole
plate (dimensions of 5 cm 3 5 cm with thickness between 2.3
and 2.7 mm)

Fig. 7 Thermal images taken at t 5 0.01 and 0.6 s after thermal
flash from front surface of a CMC plate with machined flat-
bottom holes at back surface

Fig. 8 Plane thermal effusivity images at various depths below the front surface of a CMC plate with machined flat-bottom
holes at back surface
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Multilayer TBC. TBCs are commonly used on hot gas-path
components in air- and land-based gas turbines. In this applica-
tion, a thermally insulating ceramic topcoat (the TBC) is bonded
to a thin oxidation-resistant metal coating (the bond coat) on a
metal substrate. As a result, TBC-coated components can be oper-
ated at higher temperatures, with improved performance and
extended lifetime [25]. Because TBCs play a critical role in pro-
tecting the substrate components, it is important to detect damage
and property change in early stages of coating degradation to
ensure coating integrity.

A 25-mm-diameter TBC sample was imaged by TT. The imag-
ing rate was 1068 Hz with a total of 3000 frames taken. Each
image has 128� 128 pixels which correspond to a surface area re-
solution of 0.2� 0.2 mm2 per pixel. This sample was exposed to a
high temperature for many thermal cycles, so small cracks had
developed within the ceramic coating. The thickness is 0.35 mm
for the ceramic topcoat and 3.2 mm for the substrate. The nominal
thermal effusivity e is 2010 and 5490 J/(m2 K s1/2), and the

thermal diffusivity a is 0.498 and 2.49 mm2/s for the coating and
substrate, respectively. The bond coat is thin and has properties
similar to the substrate, so it is considered as part of the substrate.
Figure 10(a) shows a typical cross-sectional effusivity image of
the sample. It clearly displays a low-effusivity coating layer with
some effusivity variations and a relatively uniform high-effusivity
substrate layer. Based on the material properties and test duration,
the thickness of each plane slice is 21 lm within the coating layer
and an average of 47 lm within the substrate, as determined from
Eq. (5). In Fig. 10(b), the average effusivity profile from the meas-
ured results is compared with that calculated from a theoretical
two-layer model using the TBC material properties. Clearly, the
measured profile matches well with the theoretical one. The slight
difference in shallow depths (early times) is due to variations in
experimental and coating conditions, such as flash duration and
surface roughness, and in greater depths to a low signal-to-noise
ratio (this noise is visible in Fig. 10(a)). These deviations could be
reduced with more accurate system calibration and robust signal
smoothing.

Figure 11 shows plane effusivity images at different depths
within the sample. They clearly indicate the presence of small
damages (with lower effusivity) with sizes of 1 mm and smaller at
depths below the half thickness of the coating layer
(0.2–0.35 mm). The effusivity variation near the edge, as seen in
the 1.2-mm-depth image, was due partially to a slight difference
of coating thickness and thermal property at the edge (because the
edge was mounted during the thermal cycling test) and partially to
the use of a single flash lamp (located at left side) in the thermal-
imaging test. These results demonstrate that TT can determine
material property as well as detect and locate small damages
within TBC coatings.

Discussion

TT is the first practical thermal-imaging method for quantita-
tive 3D imaging of the interior of a solid sample. It has significant

Fig. 9 (a) Cross-sectional thermal effusivity images and (b)
corresponding diagrams along the horizontal lines of the flat-
bottom-hole plate as illustrated in Fig. 5

Fig. 10 (a) Cross section effusivity image and (b) effusivity depth profile for TBC sample

Fig. 11 Plane effusivity images at various depths of TBC sample
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advantages over conventional contrast-based methods [26]. This
is because that the constructed parameter from TT is a physical
property that is inherent to each material, so multiple materials
within a heterogeneous material can be easily identified. When data
analysis is performed by 2D plane slicing or 3D volume rendering,
material compositions/structures and flaws as well as their dimen-
sions within the 3D volume can be determined simultaneously. As
a result, data analysis and interpretation become much easier.

Thermal diffusion is inherent to all heat-transfer processes and
is considered as the single factor that limits the detection sensitiv-
ity of all the thermal-imaging methods. This limitation is charac-
terized by the “rule of thumb” for active thermal imaging: the
diameter of the smallest detectable discontinuity should be larger
than its depth under the surface [11,27]. Formally, this rule stipu-
lates that for a discontinuity of diameter D at a depth z below sur-
face, the discontinuity can only be detected by thermal imaging
when D> z. The current TT method was not designed specifically
to deal with thermal diffusion, which would require the develop-
ment of a diffusion-related response function instead of z�1 in Eq.
(6); diffusion therefore affects the TT prediction accuracy. In Fig.
9, the cross-sectional images for a CMC plate with flat-bottom
holes, the lateral diffusion caused apparent increase of hole diam-
eter in greater depths, while the axial (depth) diffusion caused
increased blurring of the back surface with depth. Axial diffusion
may also produce other artifacts, such as the overshoot beneath an
interface (Figs. 2(a) and 4). In practical applications, however, lat-
eral diffusion is of a lesser concern because thermal imaging is
usually used for relatively thin materials. The axial diffusion is
more important to TT; its effect is discussed and evaluated below.

The axial diffusion effect can be determined quantitatively
based on the TT reconstruction for a single-layer material, as
shown in Fig. 2. In this material system, the back surface (at
z¼ 10 mm) is the only location where thermal diffusion is
observed. The diffusion causes a resolution degradation that can
be evaluated using the effusivity derivative �de/dz. Ideally, if the
effusivity profile was exact, the back surface would be a disconti-
nuity so �de/dz¼ d (Dirac delta function) at z¼ 10 mm. In reality,
as shown in Fig. 12, the �de/dz curve has a broad distribution
around the back surface, indicating a poor resolution there. The
spatial resolution is normally characterized by the full width at
half maximum, which was found to be 0.46z where z is the depth
of the discontinuity. Therefore, the depth resolution for the current
TT method is 0.46z; it degrades linearly with depth. Physically,
the resolution represents the depth range within which two sepa-
rate discontinuities cannot be differentiated by the method. Com-
bined with the known lateral resolution stipulated by the rule of
thumb for all the thermal-imaging methods, the lateral and axial
resolutions at depth z for the TT method are therefore >z and
0.46z, respectively.

Thermal diffusion is a unique phenomenon not observed (or in-
significant) in other imaging technologies. In ultrasonic testing,
for example, the spatial resolution is determined by the shape and
width of the ultrasonic pulses. These pulse characteristics gener-
ally do not change in the far field [28], so the spatial resolution is
maintained for a long distance of pulse propagation. In thermal
imaging, the thermal front degrades quickly as the heat is propa-
gated inside a material. This degradation can be observed from
the temperature distributions within a semi-infinite material at
various times, as expressed in Eq. (2). Figure 13 shows two such
distributions calculated based on the properties of material no. 1
in Table 2. For each distribution, the nominal propagation dis-
tance z determined from Eq. (5) is also marked in the figure. At
t¼ 0, the temperature distribution, not shown in Fig. 13, is a Dirac
delta function d(0), so it has an infinitely sharp thermal front at
z¼ 0. As time increases, the thermal front becomes broader with a
decreased “intensity” (slope), which imposes a weaker driving
force to the front so its propagation speed decreases as predicted
by Eq. (5).

Because of thermal diffusion, thermal energy has been consid-
ered a poor source to probe materials. Nevertheless, thermal imag-
ing is a very effective technique especially for large-area imaging
of relatively thin materials. Recent advances in infrared camera
manufacturing have also significantly improved its accuracy and
accessibility. The challenge to expand this technology therefore
relies on our ability to eliminate the diffusion effect so imaging
sensitivity and resolution are maintained at all the conditions. A
recent study has demonstrated that the axial thermal diffusion can
be accounted for and eliminated under certain conditions [29]. It
is therefore possible that further development may eventually
break the rule of thumb that limits all the current thermal-imaging
methods and will establish TT as a high-resolution imaging tool
for not only NDE but also other scientific, medical, and engineer-
ing imaging applications.

Conclusion

A TT method was developed to construct for the first time the
3D thermal effusivity distribution in the entire volume of a test
sample based on one-sided pulsed thermal-imaging data. Because
thermal effusivity is an intrinsic material property that is unique
for each material, TT may quantitatively characterize material
compositions and dimensions of various components within the
3D sample volume. The TT formulation was found to satisfy the
total effusivity conservation as well as to yield correct asymptotic
values for single-layer and multilayer material systems. Theoreti-
cal calculations verified that TT can predict the material effusivity
as a function of depth, although the accuracy is limited around the
interfaces of abrupt property changes due to thermal diffusion.
Experimental TT results were presented for two samples: a CMC

Fig. 12 Effusivity derivative curve as a function of depth for a
one-layer material with a material effusivity of 2000 J/(m2 K s1/2)
and a thickness of 10 mm

Fig. 13 Temperature distributions within a semi-infinite mate-
rial at various times after a thermal flash is applied on z 5 0 at
t 5 0
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plate with machined flat-bottom holes and a multilayer TBC. Data
analyses were carried out from 2D slice images in the plane (par-
allel to surface) and cross section directions. It was demonstrated
that TT can determine material properties and resolve the distrib-
uted defects within the volume of the samples. These theoretical
and experimental evaluations showed that TT results can be easily
interpreted and analyzed. Although thermal diffusion is a problem
for high-resolution imaging by the current TT method which has
the lateral and axial resolutions of >z and 0.46z, respectively, at
depth z, advanced algorithms to eliminate this effect are being
developed. These advances will further establish TT as a high-
resolution imaging tool for not only NDE but also other scientific,
medical, and engineering applications.
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Nomenclature

c ¼ specific heat (J/kg K)
e ¼ thermal effusivity (J/m2 K s1/2)

ea ¼ apparent thermal effusivity (J/m2 K s1/2)
k ¼ thermal conductivity (W/m K)
L ¼ plate thickness (m)
N ¼ number of layers
Q ¼ pulsed energy absorbed on surface (J/m2)
S ¼ a function with summation terms
t ¼ time (s)

T ¼ temperature (�C or K)
x, y, z ¼ x-, y-, z-coordinates (m)

Greek Symbols

a ¼ thermal diffusivity (m2/s)
C ¼ dimensionless parameter: (e1� e2)/(e1þ e2)
q ¼ density (kg/m3)

Subscripts

1, 2 ¼ for layers 1 and 2
c ¼ characteristic
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