Abstract

To effectively alleviate the heat transfer deterioration (HTD) phenomenon of supercritical CO2 flow in a vertical circular tube, this paper proposes multiple truncated ribs from a whole O-ring rib but distributed in helical-like distribution. The fluid hydraulics and thermal performance with a verified standard k–ω mode are numerically explored. The effects of the height, the distance, and the number of truncated ribs on flow characteristics, and heat transfer are observed and analyzed in detail. Results show that the heat transfer coefficient increases significantly with increasing rib height, and as the pitch decreases the fluid recirculation area behind each rib decreases, resulting in stronger mixing of swirling flow, which enhances turbulent kinetic energy in the downstream and weakens the buoyancy force, thus mitigating heat transfer deterioration. This study suggests that introducing multiple truncated ribs distributed along helices into circular vertical tubes can be a beneficial way to alleviate heat transfer deterioration and to enhance heat transfer of supercritical CO2 flow.

References

1.
Xie
,
G.
,
Xu
,
X.
,
Lei
,
X.
,
Li
,
Z.
,
Li
,
Y.
, and
Sunden
,
B.
,
2022
, “
Heat Transfer Behaviors of Some Supercritical Fluids: A Review
,”
Chin. J. Aeronaut.
,
35
(
1
), pp.
290
306
.10.1016/j.cja.2020.12.022
2.
Xie
,
J.
,
Liu
,
D.
,
Yan
,
H.
,
Xie
,
G.
, and
Boetcher
,
S. K. S.
,
2020
, “
A Review of Heat Transfer Deterioration of Supercritical Carbon Dioxide Flowing in Vertical Tubes: Heat Transfer Behaviors, Identification Methods, Critical Heat Fluxes, and Heat Transfer Correlations
,”
Int. J. Heat Mass Transfer
,
149
, p.
119233
.10.1016/j.ijheatmasstransfer.2019.119233
3.
Luu
,
M. T.
,
Milani
,
D.
,
McNaughton
,
R.
, and
Abbas
,
A.
,
2017
, “
Analysis for Flexible Operation of Supercritical CO2 Brayton Cycle Integrated With Solar Thermal Systems
,”
Energy
,
124
, pp.
752
771
.10.1016/j.energy.2017.02.040
4.
Yamaguchi
,
H.
,
Zhang
,
X. R.
,
Fujima
,
K.
,
Enomoto
,
M.
, and
Sawada
,
N.
,
2006
, “
Solar Energy Powered Rankine Cycle Using Supercritical CO2
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2345
2354
.10.1016/j.applthermaleng.2006.02.029
5.
Zhu
,
H.
,
Xie
,
G.
,
Yuan
,
H.
, and
Nizetic
,
S.
,
2022
, “
Thermodynamic Assessment of Combined Supercritical CO2 Cycle Power Systems with Organic Rankine Cycle or Kalina Cycle
,”
Sustainable Energy Technologies and Assessments
,
52
, p.
102166
.10.1016/j.seta.2022.102166
6.
Kline
,
N.
,
Feuerstein
,
F.
, and
Tavoularis
,
S.
,
2018
, “
Onset of Heat Transfer Deterioration in Vertical Pipe Flows of CO2 at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1056
1068
.10.1016/j.ijheatmasstransfer.2017.11.039
7.
Eter
,
A.
,
Groeneveld
,
D.
, and
Tavoularis
,
S.
,
2017
, “
Convective Heat Transfer in Supercritical Flows of CO2 in Tubes With and Without Flow Obstacles
,”
Nucl. Eng. Des.
,
313
, pp.
162
176
.10.1016/j.nucengdes.2016.12.016
8.
Bruch
,
A.
,
Bontemps
,
A.
, and
Colasson
,
S.
,
2009
, “
Experimental Investigation of Heat Transfer of Supercritical Carbon Dioxide Flowing in a Cooled Vertical Tube
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2589
2598
.10.1016/j.ijheatmasstransfer.2008.12.021
9.
Song
,
J. H.
,
Kim
,
H. Y.
,
Kim
,
H.
, and
Bae
,
Y. Y.
,
2008
, “
Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe
,”
J. Supercrit. Fluids
,
44
(
2
), pp.
164
171
.10.1016/j.supflu.2007.11.013
10.
Jiang
,
P.-X.
,
Zhang
,
Y.
,
Xu
,
Y.-J.
, and
Shi
,
R.-F.
,
2008
, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Tube at Low Reynolds Numbers
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
998
1011
.10.1016/j.ijthermalsci.2007.08.003
11.
Kim
,
D. E.
, and
Kim
,
M.-H.
,
2011
, “
Experimental Investigation of Heat Transfer in Vertical Upward and Downward Supercritical CO2 Flow in a Circular Tube
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
176
191
.10.1016/j.ijheatfluidflow.2010.09.001
12.
Kim
,
D. E.
, and
Kim
,
M. H.
,
2010
, “
Experimental Study of the Effects of Flow Acceleration and Buoyancy on Heat Transfer in a Supercritical Fluid Flow in a Circular Tube
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3336
3349
.10.1016/j.nucengdes.2010.07.002
13.
Eze
,
C.
,
Wong
,
K. W.
,
Gschnaidtne
,
T.
,
Cai
,
J.
, and
Zhao
,
J.
,
2019
, “
Numerical Study of Effects of Vortex Generators on Heat Transfer Deterioration of Supercritical Water Upward Flow
,”
Int. J. Heat Mass Transfer
,
137
, pp.
489
505
.10.1016/j.ijheatmasstransfer.2019.03.145
14.
Eze
,
C.
,
Lau
,
K. T.
,
Ahmad
,
S.
,
Nnamani
,
N.
,
Ferrand
,
T.
,
Gschnaidtner
,
T.
,
Wieland
,
C.
, and
Zhao
,
J.
,
2020
, “
Mitigation of Heat Transfer Deterioration in a Circular Tube With Supercritical CO2 Using a Novel Small-Scale Multiple Vortex Generator
,”
Int. J. Therm. Sci.
,
156
, p.
106481
.10.1016/j.ijthermalsci.2020.106481
15.
Li
,
X.
,
Sun
,
F.
,
Xie
,
G.
, and
Boetcher
,
S. K. S.
,
2020
, “
Supercritical CO2 Flowing Upward in a Vertical Tube Subject to Axially Nonuniform Heating
,”
Numer. Heat Transfer, Part A
,
78
(
12
), pp.
717
736
.10.1080/10407782.2020.1805224
16.
He
,
S.
,
Jiang
,
P.-X.
,
Xu
,
Y.-J.
,
Shi
,
R.-F.
,
Kim
,
W. S.
, and
Jackson
,
J. D.
,
2005
, “
A Computational Study of Convection Heat Transfer to CO2 at Supercritical Pressures in a Vertical Mini Tube
,”
Int. J. Therm. Sci.
,
44
(
6
), pp.
521
530
.10.1016/j.ijthermalsci.2004.11.003
17.
Wang
,
J.
,
Guan
,
Z.
,
Gurgenci
,
H.
,
Hooman
,
K.
,
Veeraragavan
,
A.
, and
Kang
,
X.
,
2018
, “
Computational Investigations of Heat Transfer to Supercritical CO2 in a Large Horizontal Tube
,”
Energy Convers. Manage.
,
157
, pp.
536
548
.10.1016/j.enconman.2017.12.046
18.
Wang
,
J.
,
Li
,
J.
,
Gurgenci
,
H.
,
Veeraragavan
,
A.
,
Kang
,
X.
, and
Hooman
,
K.
,
2019
, “
Computational Investigations on Convective Flow and Heat Transfer of Turbulent Supercritical CO2 Cooled in Large Inclined Tubes
,”
Appl. Therm. Eng.
,
159
, p.
113922
.10.1016/j.applthermaleng.2019.113922
19.
Li
,
X.-W.
,
Meng
,
J.-A.
, and
Li
,
Z.-X.
,
2011
, “
Roughness Enhanced Mechanism for Turbulent Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1775
1781
.10.1016/j.ijheatmasstransfer.2010.12.039
You do not currently have access to this content.