Abstract

A three-dimensional solid–fluid conjugate model is employed to provide physical insights into the effect of wall conduction on fluid convection in a diamond-shaped microchannel. The study covers the effect of divergence-convergence angle, width ratio, thermal conductivity ratio, thickness ratio, and Reynolds number on peripheral heat flux, temperature, and Nusselt number profiles. Isotherms show a multidirectional thermal gradient for low thermal conductivity ratios, whereas only an axial thermal gradient is seen for higher thermal conductivity ratios. Furthermore, the overall axial surface temperature gradients decrease with increasing divergence-convergence angle and decreasing width ratio. The study also shows that the thermal conductivity ratio significantly influences the Nusselt number, while the thickness ratio has only a moderate influence for all geometries. The analysis also reveals that at a particular intermediate thermal conductivity ratio, the Nusselt number becomes maximum. Lastly, a nondimensional wall conduction number is used to characterize conjugate effects in diamond microchannels. The wall conduction effect is inconsequential in diamond microchannels when the nondimensional wall conduction number is less than 0.01. The present study is beneficial from a practical perspective as it helps design the optimum channel geometries subjected to conjugate effects for many heat transfer applications.

References

1.
Sui
,
Y.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2011
, “
An Experimental Study of Flow Friction and Heat Transfer in Wavy Microchannels With Rectangular Cross Section
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2473
2482
.10.1016/j.ijthermalsci.2011.06.017
2.
Chiam
,
Z. L.
,
Lee
,
P. S.
,
Singh
,
P. K.
, and
Mou
,
N.
,
2016
, “
Investigation of Fluid Flow and Heat Transfer in Wavy Micro-Channels With Alternating Secondary Branches
,”
Int. J. Heat Mass Transf.
,
101
, pp.
1316
1330
.10.1016/j.ijheatmasstransfer.2016.05.097
3.
Duryodhan
,
V. S.
,
Singh
,
A.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2015
, “
Convective Heat Transfer in Diverging and Converging Microchannels
,”
Int. J. Heat Mass Transf.
,
80
, pp.
424
438
.10.1016/j.ijheatmasstransfer.2014.09.042
4.
Liu
,
F.
, and
Jing
,
D.
,
2021
, “
Hydrothermal Performances of Symmetric and Asymmetric Divergent-Convergent Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105566
.10.1016/j.icheatmasstransfer.2021.105566
5.
Goli
,
S.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2019
, “
Three-Dimensional Numerical Study of Flow Physics of Single-Phase Laminar Flow Through Diamond (Diverging–Converging) Microchannel
,”
SN Appl. Sci.
,
1
(
11
), p.
1353
.10.1007/s42452-019-1379-2
6.
Goli
,
S.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2022
, “
Physics of Fluid Flow in an Hourglass (Converging–Diverging) Microchannel
,”
Phys. Fluids
,
34
(
5
), p.
052006
.10.1063/5.0090190
7.
Yong
,
J. Q.
, and
Teo
,
C. J.
,
2014
, “
Mixing and Heat Transfer Enhancement in Microchannels Containing Converging-Diverging Passages
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
4
), p.
041704
.10.1115/1.4026090
8.
Afzal
,
A.
, and
Kim
,
K. Y.
,
2015
, “
Convergent-Divergent Micromixer Coupled With Pulsatile Flow
,”
Sens. Actuators, B
,
211
, pp.
198
205
.10.1016/j.snb.2015.01.062
9.
Taymaz
,
I.
,
Koc
,
I.
, and
Islamoğlu
,
Y.
,
2008
, “
Experimental Study on Forced Convection Heat Transfer Characteristics in a Converging Diverging Heat Exchanger Channel
,”
Heat Mass Transfer
,
44
(
10
), pp.
1257
1262
.10.1007/s00231-007-0366-0
10.
Goli
,
S.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2022
, “
Hydrothermal and Second Law Analyses of Fluid Flow in Converging-Diverging (Hourglass) Microchannel
,”
Heat Transfer Eng.
,
44
(
3
), pp.
1
27
.10.1080/01457632.2022.2049561
11.
Chakravarthii
,
M. K. D.
,
Mutharasu
,
D.
, and
Shanmugan
,
S.
,
2017
, “
Experimental and Numerical Investigation of Pressure Drop and Heat Transfer Coefficient in Converging–Diverging Microchannel Heat Sink
,”
Heat Mass Transfer
,
53
(
7
), pp.
2265
2277
.10.1007/s00231-017-1978-7
12.
Goli
,
S.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2022
, “
Study of Hydrothermal Transport Phenomena and Performance Characteristics for a Flow Through a Diamond (Diverging-Converging) Microchannel
,”
Therm. Sci. Eng. Prog.
,
29
, p.
101195
.10.1016/j.tsep.2022.101195
13.
Duryodhan
,
V. S.
,
Singh
,
A.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2016
, “
A Simple and Novel Way of Maintaining Constant Wall Temperature in Microdevices
,”
Sci. Rep.
,
6
(
1
), p.
18230
.10.1038/srep18230
14.
Duryodhan
,
V. S.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2017
, “
Heat Rate Distribution in Converging and Diverging Microchannel in Presence of Conjugate Effect
,”
Int. J. Heat Mass Transfer
,
104
, pp.
1022
1033
.10.1016/j.ijheatmasstransfer.2016.09.014
15.
Duryodhan
,
V. S.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2013
, “
Liquid Flow Through a Diverging Microchannel
,”
Microfluid. Nanofluid.
,
14
(
1–2
), pp.
53
67
.10.1007/s10404-012-1022-7
16.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
,
2004
, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3993
4004
.10.1016/j.ijheatmasstransfer.2004.04.016
17.
Rosa
,
P.
,
Karayiannis
,
T. G.
, and
Collins
,
M. W.
,
2009
, “
Single-Phase Heat Transfer in Microchannels: The Importance of Scaling Effects
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3447
3468
.10.1016/j.applthermaleng.2009.05.015
18.
Celata
,
G. P.
,
Cumo
,
M.
,
Marconi
,
V.
,
McPhail
,
S. J.
, and
Zummo
,
G.
,
2006
, “
Microtube Liquid Single-Phase Heat Transfer in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3538
3546
.10.1016/j.ijheatmasstransfer.2006.03.004
19.
Liu
,
Z.
,
Zhao
,
Y.
, and
Takei
,
M.
,
2007
, “
Experimental Study on Axial Wall Heat Conduction for Convective Heat Transfer in Stainless Steel Microtube
,”
Heat Mass Transfer
,
43
(
6
), pp.
587
594
.10.1007/s00231-006-0144-4
20.
Datta
,
A.
,
Sharma
,
V.
,
Sanyal
,
D.
, and
Das
,
P.
,
2019
, “
A Conjugate Heat Transfer Analysis of Performance for Rectangular Microchannel With Trapezoidal Cavities and Ribs
,”
Int. J. Therm. Sci.
,
138
, pp.
425
446
.10.1016/j.ijthermalsci.2018.12.020
21.
Li
,
Z.
,
Huai
,
X.
,
Tao
,
Y.
, and
Chen
,
H.
,
2007
, “
Effects of Thermal Property Variations on the Liquid Flow and Heat Transfer in Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2803
2814
.10.1016/j.applthermaleng.2007.02.007
22.
Nonino
,
C.
,
Savino
,
S.
,
Del Giudice
,
S.
, and
Mansutti
,
L.
,
2009
, “
Conjugate Forced Convection and Heat Conduction in Circular Microchannels
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
823
830
.10.1016/j.ijheatfluidflow.2009.03.009
23.
Guo
,
Z. Y.
, and
Li
,
Z. X.
,
2003
, “
Size Effect on Microscale Single-Phase Flow and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
46
(
1
), pp.
149
159
.10.1016/S0017-9310(02)00209-0
24.
Tiselj
,
I.
,
Hetsroni
,
G.
,
Mavko
,
B.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2004
, “
Effect of Axial Conduction on the Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2551
2565
.10.1016/j.ijheatmasstransfer.2004.01.008
25.
Moharana
,
M. K.
,
Singh
,
P. K.
, and
Khandekar
,
S.
,
2012
, “
Optimum Nusselt Number for Simultaneously Developing Internal Flow Under Conjugate Conditions in a Square Microchannel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
7
), p. 071703.10.1115/1.4006110
26.
Koşar
,
A.
,
2010
, “
Effect of Substrate Thickness and Material on Heat Transfer in Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
49
(
4
), pp.
635
642
.10.1016/j.ijthermalsci.2009.11.004
27.
Lin
,
M.
,
Wang
,
Q. W.
, and
Guo
,
Z.
,
2016
, “
Investigation on Evaluation Criteria of Axial Wall Heat Conduction Under Two Classical Thermal Boundary Conditions
,”
Appl. Energy
,
162
, pp.
1662
1669
.10.1016/j.apenergy.2015.04.099
28.
Moharana
,
M. K.
,
Agarwal
,
G.
, and
Khandekar
,
S.
,
2011
, “
Axial Conduction in Single-Phase Simultaneously Developing Flow in a Rectangular Mini-Channel Array
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1001
1012
.10.1016/j.ijthermalsci.2011.01.017
29.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.10.1016/S0017-9310(99)00151-9
30.
Li
,
Z.
,
He
,
Y. L.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
,
2007
, “
Experimental and Numerical Studies of Liquid Flow and Heat Transfer in Microtubes
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3447
3460
.10.1016/j.ijheatmasstransfer.2007.01.016
31.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3973
3985
.10.1016/S0017-9310(02)00101-1
32.
Rahimi
,
M.
, and
Mehryar
,
R.
,
2012
, “
Numerical Study of Axial Heat Conduction Effects on the Local Nusselt Number at the Entrance and Ending Regions of a Circular Microchannel
,”
Int. J. Therm. Sci.
,
59
, pp.
87
94
.10.1016/j.ijthermalsci.2012.04.017
33.
Pandya
,
S.
,
Gurav
,
S.
,
Hedau
,
G.
,
Saha
,
S. K.
, and
Arora
,
A.
,
2020
, “
Effect of Axial Conduction in Integral Rough Friction Stir Channels: Experimental Thermo-Hydraulic Characteristics Analyses
,”
Heat Mass Transfer
,
56
(
6
), pp.
1725
1738
.10.1007/s00231-019-02788-7
34.
Ghaedamini
,
H.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2013
, “
Developing Forced Convection in Converging–Diverging Microchannels
,”
Int. J. Heat Mass Transfer
,
65
, pp.
491
499
.10.1016/j.ijheatmasstransfer.2013.06.036
35.
Dehghan
,
M.
,
Daneshipour
,
M.
,
Valipour
,
M. S.
,
Rafee
,
R.
, and
Saedodin
,
S.
,
2015
, “
Enhancing Heat Transfer in Microchannel Heat Sinks Using Converging Flow Passages
,”
Energy Convers. Manag.
,
92
, pp.
244
250
.10.1016/j.enconman.2014.12.063
36.
Abo-Zahhad
,
E. M.
,
Ookawara
,
S.
,
Radwan
,
A.
,
Elkady
,
M. F.
, and
El-Shazly
,
A. H.
,
2020
, “
Optimization of Stepwise Varying Width Microchannel Heat Sink for High Heat Flux Applications
,”
Case Stud. Therm. Eng.
,
18
, p.
100587
.10.1016/j.csite.2020.100587
37.
Kewalramani
,
G. V.
,
Hedau
,
G.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2019
, “
Study of Laminar Single Phase Frictional Factor and Nusselt Number in in-Line Micro Pin-Fin Heat Sink for Electronic Cooling Applications
,”
Int. J. Heat Mass Transfer
,
138
, pp.
796
808
.10.1016/j.ijheatmasstransfer.2019.04.118
38.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2017
,
Incropera's Principles of Heat and Mass Transfer
,
Wiley India Pvt. Ltd
.,
New Delhi
.
39.
Singh
,
S. G.
,
Kulkarni
,
A.
,
Duttagupta
,
S. P.
,
Puranik
,
B. P.
, and
Agrawal
,
A.
,
2008
, “
Impact of Aspect Ratio on Flow Boiling of Water in Rectangular Microchannels
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
153
160
.10.1016/j.expthermflusci.2008.07.014
40.
Siddique
,
A.
,
Sakalkale
,
K.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2021
, “
Investigation of Flow Distribution and Effect of Aspect Ratio on Critical Heat Flux in Multiple Parallel Microchannel Flow Boiling
,”
Heat Mass Transfer
,
57
(
4
), pp.
647
663
.10.1007/s00231-020-02972-0
41.
Wu
,
J.
,
Cao
,
W.
,
Wen
,
W.
,
Chang
,
D. C.
, and
Sheng
,
P.
,
2009
, “
Polydimethylsiloxane Microfluidic Chip With Integrated Microheater and Thermal Sensor
,”
Biomicrofluidics
,
3
(
1
), p.
012005
.10.1063/1.3058587
42.
Wang
,
B. X.
, and
Peng
,
X. F.
,
1994
, “
Experimental Investigation on Liquid Forced-Convection Heat Transfer Through Microchannels
,”
Int. J. Heat Mass Transfer
,
37
(
Suppl. 1
), pp.
73
82
.10.1016/0017-9310(94)90011-6
43.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
,
2000
, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3925
3936
.10.1016/S0017-9310(00)00045-4
44.
Herwig
,
H.
, and
Hausner
,
O.
,
2003
, “
Critical View on ‘New Results in Micro-Fluid Mechanics’: An Example
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
935
937
.10.1016/S0017-9310(02)00306-X
45.
Zhang
,
S. X.
,
He
,
Y. L.
,
Lauriat
,
G.
, and
Tao
,
W. Q.
,
2010
, “
Numerical Studies of Simultaneously Developing Laminar Flow and Heat Transfer in Microtubes With Thick Wall and Constant Outside Wall Temperature
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3977
3989
.10.1016/j.ijheatmasstransfer.2010.05.017
46.
Jain
,
A.
,
Borca-Tasciuc
,
T.
,
Roday
,
A. P.
,
Jensen
,
M. K.
, and
Kandlikar
,
S. G.
,
2005
, “
Development of an Instrumented Glass Microchannel Device for Critical Heat Flux Visualization and Studies
,”
Annual IEEE Semiconductor Thermal Measurement and Management Symposium
,
IEEE
, San Jose, CA, Mar. 15–17, pp.
26
30
.10.1109/STHERM.2005.1412155
You do not currently have access to this content.