Abstract

Recent studies report an anomalous phenomenon, particularly for small diameter microfin tubes, where the flow boiling heat transfer coefficient decreases with increasing mass velocity in the convective regime, which is contrary to that found for smooth tubes and larger diameter microfin tubes. This paper presents a critical literature review and mechanistic analysis of the anomalous phenomenon. Our analysis suggests that the anomalous phenomenon is a result of the transition of annular flow pattern from “flooded-groove” (film thickness > fin height) to “in-groove” (film thickness < fin height). The latter is associated with lower degree of turbulence, smaller wetted area, and therefore smaller heat transfer coefficient than the former. We speculated that the in-groove annular flow only occurs for small diameter tubes where the liquid film is relatively uniform, while larger tubes tend to remain flooded at the tube-bottom until dryout. This may explain the tendency of the anomalous phenomenon to occur in small diameter tubes.

References

1.
Webb
,
R. L.
, and
Kim
,
N.-H.
,
2005
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Taylor & Francis
,
New York
.
2.
Yang
,
C. M.
, and
Hrnjak
,
P.
,
2019
, “
Effect of Helical Micro-Fins on Two-Phase Flow Behavior of R410A Evaporating in Horizontal Round Tubes Obtained Through Visualization
,”
Int. J. Heat Mass Transfer
,
144
, p.
118654
.10.1016/j.ijheatmasstransfer.2019.118654
3.
Schlager
,
L.
,
Pate
,
M.
, and
Bergles
,
A.
,
1989
, “
Heat Transfer and Pressure Drop During Evaporation and Condensation of R22 in Horizontal Micro-Fin Tubes
,”
Int. J. Refrig.
,
12
(
1
), pp.
6
14
.10.1016/0140-7007(89)90006-6
4.
Kimura
,
H.
, and
Ito
,
M.
,
1981
, “
Evaporating Heat Transfer in Horizontal Internal Spiral-Grooved Tubes in the Region of Low Flow Rates
,”
Bull. JSME
,
24
(
195
), pp.
1602
1607
.10.1299/jsme1958.24.1602
5.
Cavallini
,
A.
,
Col
,
D. D.
,
Rossetto
,
L.
,
Tecnica
,
F.
, and
Padova
,
U.
,
2006
, “
Flow Boiling Inside Microfin Tubes: Prediction of the Heat Transfer Coefficient
,”
ECI International Conference on Boiling Heat Transfer
,
Spoleto, Italy
, May
7
12
.
6.
Liu
,
J.
,
Liu
,
J.
,
Zhang
,
L.
, and
Xu
,
X.
,
2021
, “
Theoretical Analysis of Annular Film Flow Evaporation Inside Microfin Tube
,”
Int. J. Heat Mass Transfer
,
165
, p.
120611
.10.1016/j.ijheatmasstransfer.2020.120611
7.
Yang
,
C. M.
, and
Hrnjak
,
P.
,
2020
, “
Diabatic Visualization Shows Effects of Micro-Fins on Evaporation of R410A: Smooth, Axial Micro-Fin, and Helical Micro-Fin Tubes
,”
Int. J. Heat Mass Transfer
,
150
, p.
119276
.10.1016/j.ijheatmasstransfer.2019.119276
8.
Thome
,
J. R.
,
1996
, “
Boiling of New Refrigerants: A State-of-the-Art Review
,”
Int. J. Refrig.
,
19
(
7
), pp.
435
457
.10.1016/S0140-7007(96)00004-7
9.
Thome
,
J. R.
,
1999
, “
Flow Boiling Inside Microfin Tubes: Recent Results and Design Methods
,”
Heat Transfer Enhancement of Heat Exchangers
,
S.
Kakaç
,
A. E.
Bergles
,
F.
Mayinger
, and
H.
Yüncü
, eds.,
Springer
,
Dordrecht, Netherlands
, pp.
487
513
.
10.
Newell
,
T. A.
, and
Shah
,
R. K.
,
2001
, “
An Assessment of Refrigerant Heat Transfer, Pressure Drop, and Void Fraction Effects in Microfin Tubes
,”
HVAC&R Res.
,
7
(
2
), pp.
125
153
.10.1080/10789669.2001.10391267
11.
Chamra
,
L. M.
, and
Webb
,
R. L.
,
1995
, “
Condensation and Evaporation in Micro-Fin Tubes at Equal Saturation Temperatures
,”
J. Enhanc. Heat Transfer
,
2
(
3
), pp.
219
229
.10.1615/JEnhHeatTransf.v2.i3.50
12.
Kuo
,
C. S.
, and
Wang
,
C. C.
,
1996
, “
In-Tube Evaporation of HCFC-22 in a 9.52 mm Micro-Fin/Smooth Tube
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2559
2569
.10.1016/0017-9310(95)00326-6
13.
Schael
,
A.-E.
, and
Kind
,
M.
,
2005
, “
Flow Pattern and Heat Transfer Characteristics During Flow Boiling of CO2 in a Horizontal Micro Fin Tube and Comparison With Smooth Tube Data
,”
Int. J. Refrig.
,
28
(
8
), pp.
1186
1195
.10.1016/j.ijrefrig.2005.09.002
14.
Dang
,
C.
,
Haraguchi
,
N.
, and
Hihara
,
E.
,
2010
, “
Flow Boiling Heat Transfer of Carbon Dioxide Inside a Small-Sized Microfin Tube
,”
Int. J. Refrig.
,
33
(
4
), pp.
655
663
.10.1016/j.ijrefrig.2010.01.003
15.
Mastrullo
,
R.
,
Mauro
,
A. W.
, and
Viscito
,
L.
,
2019
, “
Flow Boiling of Carbon Dioxide: Heat Transfer for Smooth and Enhanced Geometries and Effect of Oil. State of the Art Review
,”
Int. J. Refrig.
,
108
, pp.
311
335
.10.1016/j.ijrefrig.2019.08.028
16.
Baba
,
D.
,
Nakagawa
,
T.
, and
Koyama
,
S.
,
2012
, “
Flow Boiling Heat Transfer and Pressure Drop of R1234ze(E) and R32 in a Horizontal Micro-Fin Tube
,”
International Refrigeration and Air Conditioning Conference
, West Lafayette, IN, July 16–19, p.
1218
.https://core.ac.uk/reader/12982640
17.
Jige
,
D.
,
Sagawa
,
K.
,
Iizuka
,
S.
, and
Inoue
,
N.
,
2018
, “
Boiling Heat Transfer and Flow Characteristic of R32 Inside a Horizontal Small-Diameter Microfin Tube
,”
Int. J. Refrig.
,
95
, pp.
73
82
.10.1016/j.ijrefrig.2018.08.019
18.
Jige
,
D.
,
Iizuka
,
S.
, and
Inoue
,
N.
,
2018
, “
Boiling Heat Transfer and Pressure Drop of R1234ze(E) Inside a Small-Diameter 2.5 mm Microfin Tube
,”
International Refrigeration and Air Conditioning Conference
,
West Lafayette, IN
,
July 9–12
, p.
2542
.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=3010&context=iracc
19.
Jige
,
D.
, and
Inoue
,
N.
,
2019
, “
Flow Boiling Heat Transfer and Pressure Drop of R32 Inside 2.1 mm, 2.6 mm and 3.1 mm Microfin Tubes
,”
Int. J. Heat Mass Transfer
,
134
, pp.
566
573
.10.1016/j.ijheatmasstransfer.2019.01.027
20.
Diani
,
A.
,
Mancin
,
S.
, and
Rossetto
,
L.
,
2014
, “
R1234ze(E) flow Boiling Inside a 3.4 mm ID Microfin Tube
,”
Int. J. Refrig.
,
47
, pp.
105
119
.10.1016/j.ijrefrig.2014.07.018
21.
Diani
,
A.
,
Mancin
,
S.
, and
Rossetto
,
L.
,
2015
, “
Flow Boiling Heat Transfer of R1234yf Inside a 3.4 mm ID Microfin Tube
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
127
136
.10.1016/j.expthermflusci.2015.03.019
22.
Diani
,
A.
, and
Rossetto
,
L.
,
2015
, “
Vaporization Inside a Mini Microfin Tube: Experimental Results and Modeling
,”
J. Phys. Conf. Ser.
,
655
, p.
012032
.10.1088/1742-6596/655/1/012032
23.
Diani
,
A.
,
Mancin
,
S.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2016
, “
Experimental Investigation of R1234ze(E) flow Boiling Inside a 2.4 mm ID Horizontal Microfin Tube
,”
Int. J. Refrig.
,
69
, pp.
272
284
.10.1016/j.ijrefrig.2016.06.014
24.
Longo
,
G. A.
,
Mancin
,
S.
,
Righetti
,
G.
,
Zilio
,
C.
, and
Doretti
,
L.
,
2017
, “
Saturated R134a Flow Boiling Inside a 4.3 mm Inner Diameter Microfin Tube
,”
Sci. Technol. Built Environ.
,
23
(
6
), pp.
933
945
.10.1080/23744731.2017.1300012
25.
Diani
,
A.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2017
, “
R1234yf Flow Boiling Heat Transfer Inside a 2.4-mm Microfin Tube
,”
Heat Transfer Eng.
,
38
(
3
), pp.
303
312
.10.1080/01457632.2016.1189260
26.
Diani
,
A.
, and
Rossetto
,
L.
,
2018
, “
Experimental Analysis of Refrigerants Flow Boiling Inside Small Sized Microfin Tubes
,”
Heat Mass Transfer Stoffuebertrag.
,
54
(
8
), pp.
2315
2329
.10.1007/s00231-017-2111-7
27.
Righetti
,
G.
,
Longo
,
G. A.
,
Zilio
,
C.
,
Akasaka
,
R.
, and
Mancin
,
S.
,
2018
, “
R1233zd(E) flow Boiling Inside a 4.3 mm ID Microfin Tube
,”
Int. J. Refrig.
,
91
, pp.
69
79
.10.1016/j.ijrefrig.2018.04.020
28.
Longo
,
G. A.
,
Mancin
,
S.
,
Righetti
,
G.
, and
Zilio
,
C.
,
2019
, “
R1224yd(Z) flow Boiling Inside a Mini Microfin Tube
,”
Proceedings of the 25th IIR International Congress of Refrigeration
,
Montréal, Canada
, Aug.
24–30
, p.
404
.
29.
Diani
,
A.
, and
Rossetto
,
L.
,
2019
, “
R513A Flow Boiling Heat Transfer Inside Horizontal Smooth Tube and Microfin Tube
,”
Int. J. Refrig.
,
107
, pp.
301
314
.10.1016/j.ijrefrig.2019.07.023
30.
Diani
,
A.
, and
Rossetto
,
L.
,
2020
, “
Characteristics of R513A Evaporation Heat Transfer Inside Small-Diameter Smooth and Microfin Tubes
,”
Int. J. Heat Mass Transfer
,
162
, p.
120402
.10.1016/j.ijheatmasstransfer.2020.120402
31.
Lallemand
,
M.
,
Branescu
,
C.
, and
Haberschill
,
P.
,
2001
, “
Local Heat Transfer Coeffcients During Boiling of R22 and R407C in Horizontal Smooth and Microfin Tubes
,”
Int. J. Refrig.
,
24
(
1
), pp.
57
72
.10.1016/S0140-7007(00)00064-5
32.
Kim
,
Y.
,
Seo
,
K.
, and
Chung
,
J. T.
,
2002
, “
Evaporation Heat Transfer Characteristics of R-410A in 7 and 9.52 mm Smooth/Micro-Fin Tubes
,”
Int. J. Refrig.
,
25
(
6
), pp.
716
730
.10.1016/S0140-7007(01)00070-6
33.
Yu
,
M.
,
Lin
,
T.
, and
Tseng
,
C.
,
2002
, “
Heat Transfer and Flow Pattern During Two-Phase Flow Boiling of R-134a in Horizontal Smooth and Microfin Tubes
,”
Int. J. Refrig.
,
25
(
6
), pp.
789
798
.10.1016/S0140-7007(01)00075-5
34.
Wongsa-Ngam
,
J.
,
Nualboonrueng
,
T.
, and
Wongwises
,
S.
,
2004
, “
Performance of Smooth and Micro-Fin Tubes in High Mass Flux Region of R-134a During Evaporation
,”
Heat Mass Transfer Stoffuebertrag.
,
40
(
6–7
), pp.
425
435
.10.1007/s00231-002-0397-5
35.
Spindler
,
K.
, and
Müller-Steinhagen
,
H.
,
2009
, “
Flow Boiling Heat Transfer of R134a and R404A in a Microfin Tube at Low Mass Fluxes and Low Heat Fluxes
,”
Heat Mass Transfer
,
45
(
7
), pp.
967
977
.10.1007/s00231-007-0326-8
36.
Bandarra Filho
,
E. P.
, and
Barbieri
,
P. E. L.
,
2011
, “
Flow Boiling Performance in Horizontal Microfinned Copper Tubes With the Same Geometric Characteristics
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
832
840
.10.1016/j.expthermflusci.2010.06.012
37.
Padovan
,
A.
,
Del Col
,
D.
, and
Rossetto
,
L.
,
2011
, “
Experimental Study on Flow Boiling of R134a and R410A in a Horizontal Microfin Tube at High Saturation Temperatures
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3814
3826
.10.1016/j.applthermaleng.2011.07.026
38.
Han
,
X.
,
Li
,
P.
,
Wang
,
Z.
,
Wang
,
X.
,
Zhang
,
X.
, and
Chen
,
G.
,
2013
, “
Evaporation Heat Transfer and Pressure Drop of R161 in a 7 mm Micro-Fin Tube
,”
Int. J. Heat Mass Transfer
,
62
, pp.
638
646
.10.1016/j.ijheatmasstransfer.2013.03.017
39.
Kondou
,
C.
,
Baba
,
D.
,
Mishima
,
F.
, and
Koyama
,
S.
,
2013
, “
Flow Boiling of Non-Azeotropic Mixture R32/R1234ze(E) in Horizontal Microfin Tubes
,”
Int. J. Refrig.
,
36
(
8
), pp.
2366
2378
.10.1016/j.ijrefrig.2013.07.009
40.
Kondou
,
C.
,
Mishima
,
F.
,
Liu
,
J.
, and
Koyama
,
S.
,
2014
, “
Condensation and Evaporation of R134a, R1234ze (E) and R1234ze (Z) Flow in Horizontal Microfin Tubes at Higher Temperature
,”
International Refrigeration and Air Conditioning Conference
,
West Lafayette, IN
, July
14–17
, p.
1446
.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2445&context=iracc
41.
Kim
,
N. H.
,
2015
, “
Evaporation Heat Transfer and Pressure Drop of R-410A in a 5.0 mm O.D. Smooth and Microfin Tube
,”
Int. J. Air-Cond. Refrig.
,
23
(
1
), pp.
1
15
.10.1142/S2010132515500042
42.
Jiang
,
G. B.
,
Tan
,
J. T.
,
Nian
,
Q. X.
,
Tang
,
S. C.
, and
Tao
,
W. Q.
,
2016
, “
Experimental Study of Boiling Heat Transfer in Smooth/Micro-Fin Tubes of Four Refrigerants
,”
Int. J. Heat Mass Transfer
,
98
, pp.
631
642
.10.1016/j.ijheatmasstransfer.2016.03.024
43.
Yang
,
C. M.
, and
Hrnjak
,
P.
,
2018
, “
Effect of Straight Micro Fins on Heat Transfer and Pressure Drop of R410A During Evaporation in Round Tubes
,”
Int. J. Heat Mass Transfer
,
117
, pp.
924
939
.10.1016/j.ijheatmasstransfer.2017.10.064
44.
Kim
,
N. H.
,
2019
, “
Convective Boiling of R-410A in 5.0 and 7.0 mm Outer Diameter Microfin Tubes
,”
Exp. Heat Transfer
,
33
(
4
), pp.
1
19
.10.1080/08916152.2019.1641168
45.
Colombo
,
L. P. M.
,
Lucchini
,
A.
,
Phan
,
T. N.
,
Molinaroli
,
L.
,
Niro
,
A.
, and
Pozzoni
,
M.
,
2020
, “
Saturation Temperature Effect on Heat Transfer Coefficient During Convective Boiling in Microfin Tubes
,”
J. Phys. Conf. Ser.
, (
1
), p.
1599
.10.1088/1742-6596/1599/1/012052
46.
Righetti
,
G.
,
Longo
,
G. A.
,
Zilio
,
C.
, and
Mancin
,
S.
,
2019
, “
Flow Boiling of Environmentally Friendly Refrigerants Inside a Compact Enhanced Tube
,”
Int. J. Refrig.
,
104
, pp.
344
355
.10.1016/j.ijrefrig.2019.05.036
47.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
Oxford University Press
, New York.
48.
Se-Yoon
,
O.
, and
Bergles
,
A. E.
,
2002
, “
Visualization of the Effects of Spiral Angle on the Enhancement of in-Tube Flow Boiling in Microfin Tubes
,”
ASHRAE Trans.
,
108
(
Part 2
), p.
516
.
49.
Webb
,
R. L.
,
Narayanamurthy
,
R.
, and
Thors
,
P.
,
2000
, “
Heat Transfer and Friction Characteristics of Internal Helical-Rib Roughness
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
1
), pp.
134
142
.10.1115/1.521444
50.
Fukano
,
T.
, and
Ousaka
,
A.
,
1989
, “
Prediction of the Circumferential Distribution of Film Thickness in Horizontal and Near-Horizontal Gas-Liquid Annular Flows
,”
Int. J. Multiphase Flow
,
15
(
3
), pp.
403
419
.10.1016/0301-9322(89)90010-4
51.
Cioncolini
,
A.
, and
Thome
,
J. R.
,
2013
, “
Liquid Film Circumferential Asymmetry Prediction in Horizontal Annular Two-Phase Flow
,”
Int. J. Multiphase Flow
,
51
, pp.
44
54
.10.1016/j.ijmultiphaseflow.2012.12.003
52.
Thome
,
J. R.
,
Favrat
,
D.
, and
Kattan
,
N.
,
1997
, “
Evaporation in Microfin Tubes: A Generalized Prediction Model
,”
Proceedings of Convective Flow and Pool Boiling Conference
,
Irsee, Germany
, May
18
23
.
53.
Yashar
,
D. A.
,
Wilson
,
M. J.
,
Kopke
,
H. R.
,
Graham
,
D. M.
,
Chato
,
J. C.
, and
Newell
,
T. A.
,
2001
, “
An Investigation of Refrigerant Void Fraction in Horizontal, Microfin Tubes
,”
HVACR Res.
,
7
(
1
), pp.
67
82
.10.1080/10789669.2001.10391430
54.
Koyama
,
S.
,
Lee
,
J.
, and
Yonemoto
,
R.
,
2004
, “
An Investigation on Void Fraction of Vapor-Liquid Two-Phase Flow for Smooth and Microfin Tubes With R134a at Adiabatic Condition
,”
Int. J. Multiphase Flow
,
30
(
3
), pp.
291
310
.10.1016/j.ijmultiphaseflow.2003.10.009
55.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes: Part 2-New Heat Transfer Data for Five Refrigerants
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
1
), pp.
148
155
.10.1115/1.2830038
56.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
,
2005
, “
Investigation of Flow Boiling in Horizontal Tubes: Part II—Development of a New Heat Transfer Model for Stratified-Wavy, Dryout and Mist Flow Regimes
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2970
2985
.10.1016/j.ijheatmasstransfer.2004.12.013
57.
Kedzierski
,
M. A.
, and
Kang
,
D.
,
2018
, “
Horizontal Convective Boiling of R1234yf, R134a, and R450A Within a Micro-Fin Tube
,”
Int. J. Refrig.
,
88
, pp.
538
551
.10.1016/j.ijrefrig.2018.02.021
You do not currently have access to this content.