Abstract

High-fidelity flow boiling simulations are conducted in a vertical mini channel with offset strip fins (OSF) using R113 as a working fluid. Finite-element code PHASTA coupled with level set method for interface capturing is employed to model multiple sequential bubble nucleation using transient three-dimensional approach. The code performance is validated against experiments for a single nucleation site in a vertical rectangular channel. To assess code performance, a study on the bubble departure from the wall in a mini channel with OSF is carried out first. Contributions from the microlayer are not considered due to low heat flux values applied to the channel (1 kW/m2). The influence of surface characteristics, such as contact angle and liquid superheat on bubble dynamics, is also analyzed as well as the local two-phase heat transfer coefficient. For higher void fractions, two conical nucleation cavities are introduced in the same channel with OSF. Observed bubble characteristics (departure diameter, bubble departure frequency) are evaluated and bubble trajectories are presented and analyzed. The local heat transfer coefficient is then evaluated for each simulation. The results show approximately a 2.5 time increase in the local heat transfer coefficient when the individual bubbles approach the wall. With smaller bubble nucleation diameters, the heat transfer coefficient can increase by up to a factor of two. Thus, the current work demonstrates the flow modeling capability of the boiling phenomena in complex geometry with OSF.

References

1.
Lee
,
J.
, and
Mudawar
,
I.
,
2005
, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part II - Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer.
,
48
(
5
), pp.
941
955
.10.1016/j.ijheatmasstransfer.2004.09.019
2.
Bertsch
,
S.
,
Groll
,
E.
, and
Garimella
,
S.
,
2009
, “
Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
142
154
.10.1016/j.ijmultiphaseflow.2008.10.004
3.
Kim
,
B.
, and
Sohn
,
B.
,
2006
, “
An experimental Study of Flow Boiling in a Rectangular Channel With Offset Strip Fins
,”
Int. J. Heat Fluid Flow
,
27
, pp.
514
521
.10.1016/j.ijheatfluidflow.2005.11.008
4.
Raju
,
M. A.
,
Ashok Babu
,
T.
, and
Ranganayakulu
,
C.
,
2017
, “
Flow boiling Heat Transfer and Pressure Drop Analysis of R134a in a Brazed Heat Exchanger With Offset Strip Fins
,”
Heat Mass Transfer
,
53
, pp.
3167
3180
.10.1007/s00231-017-2060-1
5.
Pulvirenti
,
B.
,
Matalone
,
A.
, and
Barucca
,
U.
,
2010
, “
Boiling heat Transfer in Narrow Channels With Offset Strip Fins: Application to Electronic Chipsets Cooling
,”
Appl. Therm. Eng.
,
30
, pp.
2138
2145
.10.1016/j.applthermaleng.2010.05.026
6.
Wen
,
T.
,
Zhan
,
H.
, and
Zhang
,
D.
,
2019
, “
Flow boiling Heat Transfer in Mini Channel With Serrated Fins: Experimental Investigation and Development of New Correlation
,”
Int. J. Heat Mass Transfer
,
128
, pp.
1081
1094
.10.1016/j.ijheatmasstransfer.2018.09.071
7.
Kim
,
M.
, and
Lee
,
K.
,
2010
, “
The thermoflow Characteristics of an Oscillatory Flow in Offset-Strip Fins
,”
Numer. Heat Transfer, Part A
,
58
, pp.
835
851
.10.1080/10407782.2010.529033
8.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
, pp.
171
180
.10.1016/0894-1777(94)00096-Q
9.
Kim
,
M.
,
Lee
,
J.
,
Yook
,
S.
, and
Lee
,
K.
,
2011
, “
Correlations and Optimization of a Heat Exchanger With Offset-Strip Fins
,”
Int. J. Heat Mass Transfer
,
54
, pp.
2073
2079
.10.1016/j.ijheatmasstransfer.2010.11.056
10.
DeJong
,
N.
,
Zhang
,
L.
,
Jacobi
,
A.
,
Balachandar
,
S.
, and
Tafti
,
D.
,
1998
, “
A Complementary Experimental and Numerical Study of the Flow and Heat Transfer in Offset Strip-Fin Heat Exchangers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
120
, pp.
690
698
.10.1115/1.2824338
11.
Saad
,
S.
,
Clement
,
P.
,
Gentric
,
C.
,
Fourmigue
,
J.
, and
Leclerc
,
J.
,
2011
, “
Experimental distribution of Phases and Pressure Drop in a Two-Phase Offset Strip Fin Type Compact Heat Exchanger
,”
Int. J. Multiphase Flow
,
37
, pp.
576
584
.10.1016/j.ijmultiphaseflow.2011.03.009
12.
Song
,
R.
,
Cui
,
M.
, and
Liu
,
J.
,
2017
, “
A correlation for Heat Transfer and Flow Friction Charactiristics of the Offset Strip Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
115
, pp.
695
705
.10.1016/j.ijheatmasstransfer.2017.08.054
13.
Raju
,
M. A.
,
Ashok Babu
,
T.
, and
Ranganayakulu
,
C.
,
2015
, “
Development of Single Phase Heat Transfer Correlations for Water & R134a in Rectangular Channel With Smooth Wavy Fin
,”
J. Phys. Sci.
,
5
, pp.
199
208.
10.17265/2159-5348/2015.03.006
14.
Pan
,
Z.
,
Weibel
,
J.
, and
Garimella
,
S.
,
2016
, “
A saturated-Interface-Volume Phase Change Model for Simulating Flow Boiling
,”
Int. J. Heat Mass Transfer
,
93
, pp.
945
956
.10.1016/j.ijheatmasstransfer.2015.10.044
15.
Ling
,
K.
,
Zhang
,
S.
,
Liu
,
W.
,
Sui
,
X.
, and
Tao
,
W.
,
2021
, “
Interface Tracking Simulation for Subcooled Flow Boiling Using VOSET Method
,”
Front. Energy Res.
,
8
, p. 526035.10.3389/fenrg.2020.526035
16.
Allred
,
T. P.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2022
, “
The effect of Dynamic Wetting Behavior on Boiling Heat Transfer Mechnisms During Bubble Growth and Departure
,”
Int. J. Heat Mass Transfer
,
184
, p.
122276
.10.1016/j.ijheatmasstransfer.2021.122276
17.
Lee
,
J.
,
O'Neill
,
L. E.
,
Lee
,
S.
, and
Mudawar
,
I.
,
2019
, “
Experimental and Computational Investigation on Two-Phase Flow and Heat Transfer of Highly Subcooled Flow Boiling in Vertical Upflow
,”
Int. J. Heat Mass Transfer
,
136
, pp.
1199
1216
.10.1016/j.ijheatmasstransfer.2019.03.046
18.
Lei
,
Y.
,
Mudawar
,
I.
, and
Chen
,
Z.
,
2020
, “
Computational and Experimental Investigation of Condensation Flow Patterns and Heat Transfer in Parallel Rectangular Micro-Channels
,”
Int. J. Heat Mass Transfer
,
149
, pp.
119
158
.10.1016/j.ijheatmasstransfer.2019.119158
19.
Yoo
,
J.
,
Estrada-Perez
,
C. E.
, and
Hassan
,
Y. A.
,
2016
, “
Experimental study on Bubble Dynamics and Wall Heat Transfer Arising From a Single Nucleation Site at Subcooled Flow Boiling conditions - Part 1: Experimental Methods and Data Quality Verification
,”
Int. J. Multiphase Flow
,
84
, pp.
315
324
.10.1016/j.ijmultiphaseflow.2016.04.018
20.
Yoo
,
J.
,
Estrada-Perez
,
C. E.
, and
Hassan
,
Y. A.
,
2016
, “
Experimental study on Bubble Dynamics and Wall Heat Transfer Arising From a Single Nucleation Site at Subcooled Flow Boiling conditions - Part 2: Data Analysis on Sliding Bubble Characteristics and Associated Wall Heat Transfer
,”
Int. J. Multiphase Flow
,
84
, pp.
292
314
.10.1016/j.ijmultiphaseflow.2016.04.019
21.
Brackbill
,
J.
,
Kothe
,
D.
, and
Zemach
,
C.
,
1992
, “
A continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
22.
Jansen
,
K.
,
1999
, “
A stabilized Finite Element Method for Computing Turbulence
,”
Comput. Methods Appl. Mech. Eng.
,
174
(
3
), pp.
299
317
.10.1016/S0045-7825(98)00301-6
23.
Whiting
,
C.
, and
Jansen
,
K.
,
2001
, “
A stabilized Finite Element Method for the Incompressible Navier-Stokes Equations Using a Hierarchical Basis
,”
Int. J. Numer. Methods Fluids
,
35
(
1
), pp.
93
116
.10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
24.
Sussman
,
M.
,
Almgren
,
A.
,
Bell
,
J.
,
Colella
,
P.
,
Howell
,
L.
, and
Welcome
,
M.
,
1999
, “
An adaptive Level Set Approach for Incompressible Two-Phase Flows
,”
J Comput. Phys.
,
148
(
1
), pp.
81
124
.10.1006/jcph.1998.6106
25.
Li
,
M.
,
Zeng
,
K.
,
Wonnell
,
L.
, and
Bolotnov
,
I.
,
2019
, “
Development of a New Contact Angle Control Algorithm for Level-Set Method
,”
ASME
J. Fluids Eng.,
141
, p.
061301
.10.1115/1.4041987
26.
Mishra
,
A.
, and
Bolotnov
,
I.
,
2013
, “
Contact Angle Control Algorithm Development for Level-Set Interface Tracking Method
,”
Transactions of 2013 ANS Annual Meeting
, Atlanta, GA, June 16–20, pp.
1017
1019
.
27.
Li
,
M.
, and
Bolotnov
,
I.
,
2016
, “
Interface Tracking Simulation of Phase-Change Phenomena: Boiling and Condensation Verification
,”
ASME
Paper No. FEDSM2016-7701.10.1115/FEDSM2016-7701
28.
Fang
,
J.
, and
Bolotnov
,
I.
,
2017
, “
Bubble tracking Analysis of PWR Two-Phase Flow Simulations Based on the Level Set Method
,”
Nucl. Eng. Des.
,
323
, pp.
68
77
.10.1016/j.nucengdes.2017.07.034
29.
Scriven
,
L.
,
1959
, “
On the Dynamics of Phase Growth
,”
Chem. Eng. Sci.
,
10
(
1–2
), pp.
1
13
.10.1016/0009-2509(59)80019-1
30.
Li
,
M.
,
2019
, “
High Resolution Boiling Simulation Using Interafce Tracking Method
,” Ph.D. dissertation,
North Carolina State University
,
Raleigh, NC
.
31.
Yue Sze
,
V.
,
2020
, “
Flow Boiling of HFE-7200 in Multi-Microchannel Heat Sinks for High-Heat Flux Applications
,” Ph.D. dissertation,
Brunel University
,
UK
.
32.
Kondo
,
Y.
, and
Tanimoto
,
K.
,
2020
,
Porous two-Phase CFD on Offset-Strip Fin Apparatus to Provide Boundary Data for Two-Phase Flow DNS
,
Mitsubishi Heavy Industries, Ltd
.,
Japan
.
33.
Li
,
M.
, and
Bolotnov
,
I.
,
2020
, “
The Evaporation and Condensation Model With Interface Tracking
,”
Int. J. Heat Mass Transfer
,
150
, pp.
119
256
.10.1016/j.ijheatmasstransfer.2019.119256
34.
Zhou
,
K.
,
Coyle
,
C.
,
Li
,
J.
,
Buongiorno
,
J.
, and
Li
,
W.
,
2017
, “
Flow boiling in Vertical Narrow Microchannels of Different Surface Wettability Characteristics
,”
Int. J. Heat Mass Transfer
,
109
, pp.
103
114
.10.1016/j.ijheatmasstransfer.2017.01.111
35.
Ahmadi
,
R.
, and
Okawa
,
T.
,
2015
, “
Influence of Surface Wettability on Bubble Behavior and Void Evolution in Subcooled Flow Boiling
,”
Int. J. Therm. Sci.
,
97
, pp.
114
125
.10.1016/j.ijthermalsci.2015.06.012
36.
Bayazit
,
B.
,
Keith Hollingsworth
,
D.
, and
Witte
,
L.
,
2003
, “
Heat Transfer Enhancement Caused by Sliding Bubbles
,”
ASME J. Heat Mass Transfer-Trans.
,
125
, pp.
503
509
.10.1115/1.1565090
37.
Yuan
,
D.
,
Chen
,
D.
,
Yan
,
X.
,
Xu
,
J.
,
Lu
,
Q.
, and
Huang
,
Y.
,
2018
, “
Bubble behavior and Its Contribution to Heat Transfer of Subcooled Flow Boiling in a Vertical Rectangular Channel
,”
Ann. Nucl. Energy
,
119
, pp.
191
202
.10.1016/j.anucene.2018.05.010
38.
Iskhakova
,
A.
,
Dinh
,
N. T.
,
Bolotnov
,
I. A.
,
Kondo
,
Y.
, and
Tanimoto
,
K.
,
2022
, “
Flow Boiling Heat Transfer Study in a Mini Channel Using DNS Approach
,”
The 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19)
, Brussels, Belgium, Ma. 6–11, (virtual).
39.
Sato
,
Y.
, and
Niceno
,
B.
,
2015
, “
A depletable Micro-Layer Model for Nucleate Pool Boiling
,”
J. Comput. Phys.
,
300
, pp.
20
52
.10.1016/j.jcp.2015.07.046
40.
Dhir
,
V.
,
Abarajith
,
H.
, and
Li
,
D.
,
2007
, “
Bubble Dynamics and Heat Transfer During Pool and Flow Boiling
,”
Heat Transfer Eng.
,
28
(
7
), pp.
608
624
.10.1080/01457630701266421
41.
Yabuki
,
T.
, and
Nakabeppu
,
O.
,
2014
, “
Heat transfer Mechanisms in Isolated Bubble Boiling of Water Observed With MEMS Sensor
,”
Int. J. Heat Mass Transfer
,
76
, pp.
286
297
.10.1016/j.ijheatmasstransfer.2014.04.012
42.
Sato
,
Y.
, and
Niceno
,
B.
,
2017
, “
Nucleate Pool Boiling Simulations Using the Interface Tracking Method: Boiling Regime From Discrete Bubble to Vapor Mushroom Region
,”
Int. J. Heat Mass Transfer
,
105
, pp.
505
524
.10.1016/j.ijheatmasstransfer.2016.10.018
43.
Sato
,
Y.
, and
Niceno
,
B.
,
2018
, “
Pool boiling Simulation Using an Interface Tracking Method: From Nucleate Boiling to Film Boiling Regime Through Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
125
, pp.
876
890
.10.1016/j.ijheatmasstransfer.2018.04.131
44.
Fuchs
,
T.
,
Kern
,
J.
, and
Stephan
,
P.
,
2006
, “
A Transient Nucleate Boiling Model Including Microscale Effects and Wall Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans.
,
128
, pp.
1257
1265
.10.1115/1.2349502
You do not currently have access to this content.