Abstract

Breast cancer is a prevalent form of cancer among women. It is associated with increased heat generation due to higher metabolism in the tumor and increased blood vessels resulting from angiogenesis. The thermal alterations result in a change in the breast surface temperature profile. Infrared imaging is an FDA-approved adjunctive to mammography, which employs the surface temperature alterations in detecting cancer. To apply infrared imaging in clinical settings, it is necessary to develop effective techniques to model the relation between the tumor characteristics and the breast surface temperatures. The present work describes the thermal modeling of breast cancer with physics-informed neural networks. Losses are assigned to random points in the domain based on the boundary conditions and governing equations that should be satisfied. The Adam optimizer in TensorFlow minimizes the losses to find the temperature field or thermal conductivity that satisfies the boundary conditions and the bioheat equation. Backpropagation computes the derivatives in the bioheat equation. Analyses of the three patient-specific cases show that the machine-learning model accurately reproduces the thermal behavior given by ansys-fluent simulation. Also, good agreement between the model prediction and the infrared images is observed. Moreover, the neural network accurately recovers the thermal conductivity within 6.5% relative error.

References

1.
Weiss, M. C., Chick, E., Conner, K., DePolo, J., Lee, V., and Uscher, J.,
2021
, “
U.S. Breast Cancer Statistics
,” Breastcancer.org [Online], accessed Oct. 13, 2021, https://www.breastcancer.org/symptoms/understand_bc/statistics
2.
Kandlikar
,
S. G.
,
Perez-Raya
,
I.
,
Raghupathi
,
P. A.
,
Gonzalez-Hernandez
,
J.-L.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2017
, “
Infrared Imaging Technology for Breast Cancer Detection – Current Status, Protocols and New Directions
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2303
2320
.10.1016/j.ijheatmasstransfer.2017.01.086
3.
Owens
,
A.
,
Kandlikar
,
S. G.
, and
Phatak
,
P.
,
2021
, “
Potential of Infrared Imaging for Breast Cancer Detection: A Critical Evaluation
,”
ASME J. Med. Diagn.
,
4
(
4
), p.
041005
.10.1115/1.4051800
4.
Gonzalez-Hernandez
,
J.-L.
,
Recinella
,
A. N.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2019
, “
Technology, Application and Potential of Dynamic Breast Thermography for the Detection of Breast Cancer
,”
Int. J. Heat Mass Transfer
,
131
, pp.
558
573
.10.1016/j.ijheatmasstransfer.2018.11.089
5.
Gescheit
,
I. M.
,
Dayan
,
A.
,
Ben-David
,
M.
, and
Gannot
,
I.
,
2009
, “
Minimal-Invasive Thermal Imaging of a Malignant Tumor: A Simple Model and Algorithm
,”
Med. Phys.
,
37
(
1
), pp.
211
216
.10.1118/1.3253992
6.
Han
,
F.
,
Shi
,
G.
,
Liang
,
C.
,
Wang
,
L.
, and
Li
,
K.
,
2015
, “
A Simple and Efficient Method for Breast Cancer Diagnosis Based on Infrared Thermal Imaging
,”
Cell Biochem. Biophys.
,
71
(
1
), pp.
491
498
.10.1007/s12013-014-0229-5
7.
Ye
,
F.
, and
Shi
,
G. L.
,
2012
, “
Clinical Breast Cancer Analysis With Surface Fitting in the Medical Thermal Texture Maps
,”
Appl. Mech. Mater.
,
263–266
, pp.
2454
2457
.10.4028/www.scientific.net/AMM.263-266.2454
8.
Rastgar-Jazi
,
M.
, and
Mohammadi
,
F.
,
2017
, “
Parameters Sensitivity Assessment and Heat Source Localization Using Infrared Imaging Techniques
,”
BioMed. Eng. OnLine
,
16
(
1
), p.
113
.10.1186/s12938-017-0403-2
9.
Akpolile
,
A.
,
Mokobia
,
E.
, and
Ikubor
,
J.
,
2021
, “
Analytical Approach to the Penne's Bioheat Equation for the Evaluation of Temperature for Deep Seated Tissues
,”
Adv. Math. Sci. J.
,
10
(
7
), pp.
2957
2976
.10.37418/amsj.10.7.4
10.
Mitra
,
S.
, and
Balaji
,
C.
,
2010
, “
A Neural Network Based Estimation of Tumour Parameters From a Breast Thermogram
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4714
4727
.10.1016/j.ijheatmasstransfer.2010.06.020
11.
Saniei
,
E.
,
Setayeshi
,
S.
,
Akbari
,
M. E.
, and
Navid
,
M.
,
2016
, “
Parameter Estimation of Breast Tumour Using Dynamic Neural Network From Thermal Pattern
,”
J. Adv. Res.
,
7
(
6
), pp.
1045
1055
.10.1016/j.jare.2016.05.005
12.
Hossain
,
S.
, and
Mohammadi
,
F. A.
,
2016
, “
Tumor Parameter Estimation Considering the Body Geometry by Thermography
,”
Comput. Biol. Med.
,
76
, pp.
80
93
.10.1016/j.compbiomed.2016.06.023
13.
Paruch
,
M.
, and
Majchrzak
,
E.
,
2007
, “
Identification of Tumor Region Parameters Using Evolutionary Algorithm and Multiple Reciprocity Boundary Element Method
,”
Eng. Appl. Artif. Intell.
,
20
(
5
), pp.
647
655
.10.1016/j.engappai.2006.11.003
14.
Das
,
K.
, and
Mishra
,
S. C.
,
2013
, “
Estimation of Tumor Characteristics in a Breast Tissue With Known Skin Surface Temperature
,”
J. Therm. Biol.
,
38
(
6
), pp.
311
317
.10.1016/j.jtherbio.2013.04.001
15.
Hatwar
,
R.
, and
Herman
,
C.
,
2017
, “
Inverse Method for Quantitative Characterisation of Breast Tumours From Surface Temperature Data
,”
Int. J. Hyperthermia
,
33
(
7
), pp.
1
757
.10.1080/02656736.2017.1306758
16.
Figueiredo
,
A. A. A.
,
do Nascimento
,
J. G.
,
Malheiros
,
F. C.
,
da Silva Ignacio
,
L. H.
,
Fernandes
,
H. C.
, and
Guimaraes
,
G.
,
2019
, “
Breast Tumor Localization Using Skin Surface Temperatures From a 2D Anatomic Model Without Knowledge of the Thermophysical Properties
,”
Comput. Methods Programs Biomed.
,
172
, pp.
65
77
.10.1016/j.cmpb.2019.02.004
17.
Bezerra
,
L. A.
,
Oliveira
,
M. M.
,
Rolim
,
T. L.
,
Conci
,
A.
,
Santos
,
F. G. S.
,
Lyra
,
P. R. M.
, and
Lima
,
R. C. F.
,
2013
, “
Estimation of Breast Tumor Thermal Properties Using Infrared Images
,”
Signal Process.
,
93
(
10
), pp.
2851
2863
.10.1016/j.sigpro.2012.06.002
18.
Agnelli
,
J. P.
,
Barrea
,
A. A.
, and
Turner
,
C. V.
,
2011
, “
Tumor Location and Parameter Estimation by Thermography
,”
Math. Comput. Modell.
,
53
(
7–8
), pp.
1527
1534
.10.1016/j.mcm.2010.04.003
19.
Gonzalez-Hernandez
,
J.-L.
,
Recinella
,
A. N.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2020
, “
An Inverse Heat Transfer Approach for Patient-Specific Breast Cancer Detection and Tumor Localization Using Surface Thermal Images in the Prone Position
,”
Infrared Phys. Technol.
,
105
, p.
103202
.10.1016/j.infrared.2020.103202
20.
Jiang
,
L.
,
Zhan
,
W.
, and
Loew
,
M. H.
,
2011
, “
Modeling Static and Dynamic Thermography of the Human Breast Under Elastic Deformation
,”
Phys. Med. Biol.
,
56
(
1
), pp.
187
202
.10.1088/0031-9155/56/1/012
21.
Gonzalez-Hernandez
,
J.-L.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2018
, “
Generation and Thermal Simulation of a Digital Model of the Female Breast in Prone Position
,”
J. Eng. Sci. Med. Diagn. Ther.
,
1
(
4
), p.
041006
.10.1115/1.4041421
22.
González
,
F. J.
,
2021
, “
Thermal Simulations of Cancerous Breast Tumors and Cysts on a Realistic Female Torso
,”
J. Biomech. Eng.
,
143
(
6
), p.
061001
.10.1115/1.4049957
23.
Montienthong
,
P.
, and
Rattanadecho
,
P.
,
2019
, “
Focused Ultrasound Ablation for the Treatment of Patients With Localized Deformed Breast Cancer: Computer Simulation
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
10
), p.
101101
.10.1115/1.4044393
24.
Zhang
,
X.
,
Zheng
,
L.
,
Liu
,
L.
, and
Zhang
,
X.
,
2020
, “
Modeling and Simulation on Heat Transfer in Blood Vessels Subject to a Transient Laser Irradiation
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
3
), p.
031201
.10.1115/1.4045669
25.
Zhu He
,
Z.
,
Xue
,
X.
, and
Liu
,
J.
,
2013
, “
An Effective Finite Difference Method for Simulation of Bioheat Transfer in Irregular Tissues
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
7
), p.
071003
.10.1115/1.4024064
26.
Partridge
,
P. W.
, and
Wrobel
,
L. C.
,
2007
, “
An Inverse Geometry Problem for the Localisation of Skin Tumours by Thermal Analysis
,”
Eng. Anal. Boundary Elem.
,
31
(
10
), pp.
803
811
.10.1016/j.enganabound.2007.02.002
27.
Manuel Luna
,
J.
,
Romero-Mendez
,
R.
,
Hernandez-Guerrero
,
A.
, and
Elizalde-Blancas
,
F.
,
2012
, “
Procedure to Estimate Thermophysical and Geometrical Parameters of Embedded Cancerous Lesions Using Thermography
,”
J. Biomech. Eng.
,
134
(
3
), p.
031008
.10.1115/1.4006197
28.
Agnelli
,
J. P.
,
Padra
,
C.
, and
Turner
,
C. V.
,
2011
, “
Shape Optimization for Tumor Location
,”
Comput. Math. Appl.
,
62
(
11
), pp.
4068
4081
.10.1016/j.camwa.2011.09.055
29.
Chebbah
,
N. K.
,
Ouslim
,
M.
, and
Benabid
,
S.
,
2022
, “
New Computer Aided Diagnostic System Using Deep Neural Network and SVM to Detect Breast Cancer in Thermography
,”
Quant. InfraRed Thermogr. J.
, pp.
1
16
.10.1080/17686733.2021.2025018
30.
Mambou
,
S. J.
,
Maresova
,
P.
,
Krejcar
,
O.
,
Selamat
,
A.
, and
Kuca
,
K.
,
2018
, “
Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model
,”
Sensors (Basel)
,
18
(
9
), p.
2799
.10.3390/s18092799
31.
Ng
,
E. Y. K.
, and
Kee
,
E. C.
,
2008
, “
Advanced Integrated Technique in Breast Cancer Thermography
,”
J. Med. Eng. Technol.
,
32
(
2
), pp.
103
114
.10.1080/03091900600562040
32.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Machine Learning of Linear Differential Equations Using Gaussian Processes
,”
J. Comput. Phys.
,
348
, pp.
683
693
.10.1016/j.jcp.2017.07.050
33.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Inferring Solutions of Differential Equations Using Noisy Multi-Fidelity Data
,”
J. Comput. Phys.
,
335
, pp.
736
746
.10.1016/j.jcp.2017.01.060
34.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
35.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Heat Transfer Problems
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
6
), p.
060801
.10.1115/1.4050542
36.
Hughes
,
M. T.
,
Kini
,
G.
, and
Garimella
,
S.
,
2021
, “
Status, Challenges, and Potential for Machine Learning in Understanding and Applying Heat Transfer Phenomena
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
12
), p.
120802
.10.1115/1.4052510
37.
Pashaei Kalajahi
,
A.
,
Perez-Raya
,
I.
, and
D'Souza
,
R. M.
,
2022
, “
Physics Informed Deep Neural Net Inverse Modeling for Estimating Model Parameters in Permeable Porous Media Flows
,”
J. Fluids Eng.
,
144
(
6
), p.
061102
.10.1115/1.4053549
38.
Chen
,
H.
,
Wang
,
K.
,
Liu
,
Z.
, and
Zhou
,
H.
,
2022
, “
Surface Temperature Analysis and Thermophysical Property Estimation for Breast Cancer by Deep Learning
,”
Numer. Heat Transfer, Part A: Appl.
,
1
(
1
), pp.
1
17
.10.1080/10407782.2022.2079298
39.
Recinella
,
A. N.
,
Gonzalez-Hernandez
,
J.-L.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2019
, “
Clinical Infrared Imaging in the Prone Position for Breast Cancer Screening—Initial Screening and Digital Model Validation
,”
ASME J. Med. Diagn.
,
3
(
1
), p.
011005
.10.1115/1.4045319
40.
Mukhmetov
,
O.
,
Igali
,
D.
,
Mashekova
,
A.
,
Zhao
,
Y.
,
Ng
,
E. Y. K.
,
Fok
,
S. C.
, and
Teh
,
S. L.
,
2021
, “
Thermal Modeling for Breast Tumor Detection Using Thermography
,”
Computer Methods and Programs in Biomedicine
,
183
, p.
105074
.10.1016/j.cmpb.2019.105074
41.
Singh
,
D.
, and
Singh
,
A. K.
,
2020
, “
Role of Image Thermography in Early Breast Cancer Detection-Past, Present and Future
,”
137
, p.
109542
.10.1016/j.mehy.2019.109542
42.
Fernández-Ovies
,
F. J.
,
Santiago Alférez-Baquero
,
E.
,
de Andrés-Galiana
,
E. J.
,
Cernea
,
A.
,
Fernández-Muñiz
,
Z.
, and
Fernández-Martínez
,
J. L.
,
2019
, “
Detection of Breast Cancer Using Infrared Thermography and Deep Neural Networks
,”
Bioinformatics and Biomedical Engineering
,
I.
Rojas
,
O.
Valenzuela
,
F.
Rojas
, and
F.
Ortuño
, eds.,
Springer International Publishing
,
Cham
, pp.
514
523
.
43.
Zuluaga-Gomez
,
J.
,
Al Masry
,
Z.
,
Benaggoune
,
K.
,
Meraghni
,
S.
, and
Zerhouni
,
N.
,
2021
, “
A CNN-Based Methodology for Breast Cancer Diagnosis Using Thermal Images
,”
Comput. Methods Biomech. Biomed. Eng. Imag. Vis.
,
9
(
2
), pp.
131
145
.10.1080/21681163.2020.1824685
44.
Chaves
,
E.
,
Gonçalves
,
C. B.
,
Albertini
,
M. K.
,
Lee
,
S.
,
Jeon
,
G.
, and
Fernandes
,
H. C.
,
2020
, “
Evaluation of Transfer Learning of Pre-Trained CNNs Applied to Breast Cancer Detection on Infrared Images
,”
Appl. Opt.
,
59
(
17
), pp.
E23
E28
.10.1364/AO.386037
45.
Sánchez-Cauce
,
R.
,
Pérez-Martín
,
J.
, and
Luque
,
M.
,
2021
, “
Multi-Input Convolutional Neural Network for Breast Cancer Detection Using Thermal Images and Clinical Data
,”
Comput. Methods Programs Biomed.
,
204
, p.
106045
.10.1016/j.cmpb.2021.106045
46.
Husaini
,
M. A. S. A.
,
Habaebi
,
M. H.
,
Hameed
,
S. A.
,
Islam
,
M. R.
, and
Gunawan
,
T. S.
,
2020
, “
A Systematic Review of Breast Cancer Detection Using Thermography and Neural Networks
,”
IEEE Access
,
8
, pp.
208922
208937
.10.1109/ACCESS.2020.3038817
47.
Zadeh
,
H. G.
,
Fayazi
,
A.
,
Binazir
,
B.
, and
Yargholi
,
M.
,
2020
, “
Breast Cancer Diagnosis Based on Feature Extraction Using Dynamic Models of Thermal Imaging and Deep Autoencoder Neural Networks
,”
JTE
,
49
(
3
), pp.
1516
1532
.10.1520/JT E20200044
48.
Torres-Galván
,
J. C.
,
Guevara
,
E.
,
Kolosovas-Machuca
,
E. S.
,
Oceguera-Villanueva
,
A.
,
Flores
,
J. L.
, and
González
,
F. J.
,
2022
, “
Deep Convolutional Neural Networks for Classifying Breast Cancer Using Infrared Thermography
,”
Quant. InfraRed Thermogr. J.
,
19
(
4
), pp.
283
294
.10.1080/17686733.2021.1918514
49.
Gautam
,
N.
,
Singh
,
A.
,
Kumar
,
K.
, and
Aggarwal
,
P. K.
,
2021
, “
Investigation on Performance Analysis of Support Vector Machine for Classification of Abnormal Regions in Medical Image
,”
J. Ambient Intell. Human Comput.
,
1
(
1
), pp. 1–10.10.1007/s12652-021-02965-9
50.
Gautherie
,
M.
,
1980
, “
Thermopathology of Breast Cancer: Measurement and Analysis of In Vivo Temperature and Blood Flow
,”
Ann. New York Acad. Sci.
,
335
(
1
), pp.
383
415
.10.1111/j.1749-6632.1980.tb50764.x
51.
Lozano
,
A.
,
Hayes
,
J. C.
,
Compton
,
L. M.
,
Azarnoosh
,
J.
, and
Hassanipour
,
F.
,
2020
, “
Determining the Thermal Characteristics of Breast Cancer Based on High-Resolution Infrared Imaging, 3D Breast Scans, and Magnetic Resonance Imaging
,”
Sci. Rep.
,
10
(
1
), p.
10105
.10.1038/s41598-020-66926-6
52.
Duck
,
F. A.
,
2013
,
Physical Properties of Tissues: A Comprehensive Reference Book
,
Academic Press
, New York.
53.
Fathi
,
M. F.
,
Perez-Raya
,
I.
,
Baghaie
,
A.
,
Berg
,
P.
,
Janiga
,
G.
,
Arzani
,
A.
, and
D'Souza
,
R. M.
,
2020
, “
Super-Resolution and Denoising of 4D-Flow MRI Using Physics-Informed Deep Neural Nets
,”
Comput. Methods Programs Biomed.
,
197
, p.
105729
.10.1016/j.cmpb.2020.105729
54.
Rao
,
C.
,
Sun
,
H.
, and
Liu
,
Y.
,
2020
, “
Physics-Informed Deep Learning for Incompressible Laminar Flows
,”
Theor. Appl. Mech. Lett.
,
10
(
3
), pp.
207
212
.10.1016/j.taml.2020.01.039
55.
Gershenson
,
M.
, and
Gershenson
,
J.
,
2022
, “
Use of Components Analysis to Identify Internal Heat in Breast Dynamic Thermal Images
,”
SPIE Proceedings Volume 12109, Thermosense: Thermal Infrared Applications XLIV
, FL, p.
121090K
.
You do not currently have access to this content.