Abstract

Studies on the thermophysical properties of H2O/CO2 mixtures for supercritical conditions, typical for a promising power generation system are far fewer than those for typical conditions of CO2 capture and storage (lower temperatures and pressures). In the previous heat transfer studies, we have setup a high-temperature and high-pressure apparatus. Here, we have extended it to a multifunction apparatus to enable the measurements of both the isobaric heat capacity and density that are important for the understanding and prediction of heat transfer behaviors, besides the design of the power generation system. For the experimental conditions, the pressure is 24 MPa, the temperatures range from 300 °C to 410 °C, and the CO2 mass fractions are 10%, 15%, and 18.5%. The isobaric heat capacities have been measured using the flow calorimeter method. The expanded relative uncertainty is 8.2% for temperatures beyond ±4 °C from the pseudocritical point and is 18.2% near the pseudocritical point. The densities were obtained from the measurements of the pressure drops with an expanded relative uncertainty of 4.8%. These two methods were validated by supercritical pure water experiments. The isobaric heat capacity and density data given in this work, as well as our previous heat transfer data, are self-consistent regarding the pseudocritical temperatures of supercritical H2O/CO2 mixtures.

References

1.
Zhang
,
H.
,
Wu
,
H.
,
Li
,
S.
,
Liu
,
D.
, and
Li
,
Q.
,
2021
, “
Anomalous Enhancement of Heat Transfer to H2O/CO2 Mixtures in Near-Critical Region
,”
ASME J. Heat Transfer
,
143
(
2
), p.
024501
.10.1115/1.4048826
2.
Zhang
,
H.
,
Wu
,
H.
,
Liu
,
D.
,
Li
,
S.
, and
Li
,
Q.
,
2020
, “
Experimental Investigations on Heat Transfer to H2O/CO2 Mixtures in Supercritical Region
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104706
.10.1016/j.icheatmasstransfer.2020.104706
3.
Chen
,
L.
,
Liu
,
D.
,
Zhang
,
H.
, and
Li
,
Q.
,
2020
, “
Theoretical Investigations on Heat Transfer to H2O/CO2 Mixtures in Supercritical Region
,”
Sci. China: Technol. Sci.
,
63
(
6
), pp.
1018
1024
.10.1007/s11431-019-1515-3
4.
Deng
,
K.
,
Zhang
,
Y.
,
Feng
,
H.
,
Liu
,
N.
,
Ma
,
L.
,
Duan
,
J.
,
Wang
,
Y.
,
Liu
,
D.
, and
Li
,
Q.
,
2022
, “
Efficient Solar Fuel Production With a High-Pressure CO2-Captured Liquid Feed
,”
Sci. Bull.
,
67
(
14
), pp.
1467
1476
.10.1016/j.scib.2022.06.009
5.
He
,
M.
,
Su
,
C.
,
Liu
,
X.
,
Qi
,
X.
, and
Lv
,
N.
,
2015
, “
Measurement of Isobaric Heat Capacity of Pure Water up to Supercritical Conditions
,”
J. Supercrit. Fluids
,
100
, pp.
1
6
.10.1016/j.supflu.2015.02.007
6.
Cheng
,
S.
,
Shang
,
F.
,
Ma
,
W.
,
Jin
,
H.
,
Sakoda
,
N.
,
Zhang
,
X.
, and
Guo
,
L.
,
2019
, “
Density Measurements of the H2-CO2-CH4-CO-H2O System by the Isochoric Method at 722–930 K and 15.4–30.3 MPa
,”
J. Chem. Eng. Data
,
64
(
9
), pp.
4024
4036
.10.1021/acs.jced.9b00399
7.
Gernert
,
J.
, and
Span
,
R.
,
2016
, “
EOS–CG: A Helmholtz Energy Mixture Model for Humid Gases and CCS Mixtures
,”
J. Chem. Thermodyn.
,
93
, pp.
274
293
.10.1016/j.jct.2015.05.015
8.
Hnědkovský
,
L.
, and
Wood
,
R. H.
,
1997
, “
Apparent Molar Heat Capacities of Aqueous Solutions of CH4, CO2, H2S, and NH3 at Temperatures From 293 K to 693 K at a Pressure of 17 MPa
,”
J. Chem. Thermodyn.
,
29
(
7
), pp.
731
747
.10.1006/jcht.1997.0192
9.
Barbero
,
J. A.
,
Hepler
,
L. G.
,
McCurdy
,
K. G.
, and
Tremaine
,
P. R.
,
1983
, “
Thermodynamics of Aqueous Carbon Dioxide and Sulfur Dioxide: Heat Capacities, Volumes, and the Temperature Dependence of Ionization
,”
Can. J. Chem.
,
61
(
11
), pp.
2509
2519
.10.1139/v83-433
10.
Seitz
,
J. C.
, and
Blencoe
,
J. G.
,
1999
, “
The CO2-H2O System. I. Experimental Determination of Volumetric Properties at 400 °C, 10–100 MPa
,” Geochim.
Cosmochim. Acta
,
63
(
10
), pp.
1559
1569
.10.1016/S0016-7037(99)00050-2
11.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1
,” National Standard Reference Data Series, Gaithersburg, MD.
12.
Yang
,
Z.
,
Liu
,
Z.
,
Bi
,
Q.
,
Guo
,
Y.
,
Yan
,
J.
,
Feng
,
S.
, and
Pan
,
H.
,
2015
, “
Design of a Flow Calorimeter for Hydrocarbon Fuel at Temperatures From (330 to 900) K and Pressures up to 6.0 MPa
,”
J. Chem. Eng. Data
,
60
(
5
), pp.
1434
1439
.10.1021/je501138c
13.
Deng
,
H.
,
Zhu
,
K.
,
Xu
,
G.
,
Tao
,
Z.
,
Zhang
,
C.
, and
Liu
,
G.
,
2012
, “
Isobaric Specific Heat Capacity Measurement for Kerosene RP-3 in the Near-Critical and Supercritical Regions
,”
J. Chem. Eng. Data
,
57
(
2
), pp.
263
268
.10.1021/je200523a
14.
Nazeri
,
M.
,
Chapoy
,
A.
,
Burgass
,
R.
, and
Tohidi
,
B.
,
2017
, “
Measured Densities and Derived Thermodynamic Properties of CO2-Rich Mixtures in Gas, Liquid and Supercritical Phases From 273 K to 423 K and Pressures up to 126 MPa
,”
J. Chem. Thermodyn.
,
111
, pp.
157
172
.10.1016/j.jct.2017.03.036
15.
Kobata
,
T.
, and
Kajikawa
,
H.
,
2019
, “
Development of a System for Measuring Head Differential Pressure and Density of Working Fluid at High Pressures
,”
Measurement
,
131
, pp.
79
84
.10.1016/j.measurement.2018.08.065
16.
Rogak
,
S. N.
, and
Faraji
,
D.
,
2004
, “
Heat Transfer to Water-Oxygen Mixtures at Supercritical Pressure
,”
ASME J. Heat Transfer
,
126
(
3
), pp.
419
424
.10.1115/1.1731329
17.
Zhang
,
H.
,
Liu
,
D.
, and
Li
,
Q.
,
2022
, “
Measurements and Correlation of Hydraulic Resistance for H2O/CO2 Mixtures at Supercritical Pressure
,”
Int. J. Heat Mass Transfer
,
194
, p.
123095
.10.1016/j.ijheatmasstransfer.2022.123095
You do not currently have access to this content.