Abstract

A round air jet issuing from a long straight pipe and impinging perpendicularly onto a heated flat plate was investigated experimentally. The Reynolds number (Re) covered the fully laminar, transitional, and fully turbulent regimes—Re = 850–15,400. The main focus of this investigation was the transition regime, which occurred at Re=2250–3010. Various measurements were recorded during the experiments using a hot-wire anemometer, an infrared thermometer, and a thermopile heat flux sensor; the mass transfer was measured using the naphthalene sublimation technique. The stagnation point heat transfer was correlated to the laminar and turbulent regimes in the form of the stagnation point Nusselt number, Nu0 = CRemPr0.4, where the exponent m =0.50 and 0.55, respectively. The Nu0–Re relationship exhibited nonmonotonic behavior (decrease) in the transition regime. Two counteracting mechanisms occur during transition—jet core shortening and an increase in velocity fluctuation; the former reduces Nu0, whereas the latter increases it.

References

1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
2.
Dyban
,
E. P.
, and
Mazur
,
A. I.
,
1982
,
Convection Heat Transfer in Impinging Jets (Konvektivnyj Teploobmen Pri Strujnom Obtekanii Tel)
, 1st ed.,
Naukova Dumka, Kiev
,
Ukraine
(in Russian).
3.
Downs
,
S. J.
, and
James
,
E. H.
,
1987
, “
Jet Impingement Heat Transfer–a Literature Survey
,”
ASME
Paper No. 87-HT-35.10.1115/87-HT-35
4.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
5.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
“Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
6.
Webb
,
B. W.
, and
Ma
,
C.-F.
,
1995
, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transfer
,
26
, pp.
105
217
.10.1016/S0065-2717(08)70296-X
7.
Garimella
,
S. V.
,
2000
, “
Heat Transfer and Flow Fields in Confined Jet Impingement
,”
Annu. Rev. Heat Transfer
,
11
(
11
), pp.
413
494
.10.1615/AnnualRevHeatTransfer.v11.90
8.
Vickers
,
J. M. F.
,
1959
, “
Heat Transfer Coefficients Between Fluid Jets and Normal Surfaces
,”
Ind. Eng. Chem.
,
51
(
8
), pp.
967
972
.10.1021/ie50596a045
9.
Scholtz
,
M. T.
, and
Trass
,
O.
,
1970
, “
Mass Transfer in a Nonuniform Impinging Jet,” Parts I and II
,”
AIChE J.
,
16
(
1
), pp.
82
90
.10.1002/aic.690160117
10.
Wen
,
M. -Y.
, and
Jang
,
K. -J.
,
2003
, “
An Impingement Cooling on a Flat Surface by Using Circular Jet With Longitudinal Swirling Strips
,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4657
4667
.10.1016/S0017-9310(03)00302-8
11.
Elison
,
B.
, and
Webb
,
B. W.
,
1994
, “
Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes
,”
Int. J. Heat Mass Transfer
,
37
(
8
), pp.
1207
1216
.10.1016/0017-9310(94)90206-2
12.
Katti
,
V. V.
,
Yasaswy
,
S. N.
, and
Prabhu
,
S. V.
,
2011
, “
Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet From a Circular Nozzle
,”
Heat Mass Transfer
,
47
(
3
), pp.
237
244
.10.1007/s00231-010-0716-1
13.
Lemanov
,
V.
,
Matyunin
,
V.
, and
Travnicek
,
Z.
,
2020
, “
Heat Transfer at the Stagnation Point of the Impinging Laminar Jet
,”
J. Phys. Conf. Ser.
,
1677
, p.
012018
.10.1088/1742-6596/1677/1/012018
14.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle–Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
15.
Lee
,
J.
, and
Lee
,
S. -J.
,
1999
, “
Stagnation Region Heat Transfer of a Turbulent Axisymmetric Jet Impingement
,”
Exp. Heat Transfer
,
12
(
2
), pp.
137
156
.10.1080/089161599269753
16.
Persoons
,
T.
,
Balgazin
,
K.
,
Brown
,
K.
, and
Murray
,
D. B.
,
2013
, “
Scaling of Convective Heat Transfer Enhancement Due to Flow Pulsation in an Axisymmetric Impinging Jet
,”
ASME J. Heat Transfer-Trans. ASME
,
135
, p.
111012
.10.1115/1.4024620
17.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat–Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
8
(
10
), pp.
1261
1272
.10.1016/0017-9310(65)90054-2
18.
Sogin
,
H. H.
, and
Providence
,
R. I.
,
1958
, “
Sublimation From Disks to Air Streams Flowing Normal to Their Surfaces
,”
Trans. ASME
,
80
(
1
), pp.
61
67
.10.1115/1.4012250
19.
Kumada
,
M.
, and
Mabuchi
,
I.
,
1970
, “
Studies on the Heat Transfer of Impinging Jet: 1st Rreport, Mass Transfer for Two-Dimensional Jet of Air Impinging Normally on a Flat Plate
,”
Bull. JSME
,
13
(
55
), pp.
77
85
.10.1299/jsme1958.13.77
20.
Sparrow
,
E. M.
, and
Wong
,
T. C.
,
1975
, “
Impingement Transfer Coefficients Due to Initially Laminar Slot Jets
,”
Int. J. Heat Mass Transfer
,
18
(
5
), pp.
597
605
.10.1016/0017-9310(75)90271-9
21.
Korger
,
M.
, and
Křížek
,
F.
,
1966
, “
Mass-Transfer Coefficient in Impingement Flow From Slotted Nozzles
,”
Int. J. Heat Mass Transfer
,
9
(
4
), pp.
337
344
.10.1016/0017-9310(66)90079-2
22.
Souza Mendes
,
P. R.
,
1991
, “
The Naphthalene Sublimation Technique
,”
Exp. Therm. Fluid Sci.
,
4
(
5
), pp.
510
523
.10.1016/0894-1777(91)90031-L
23.
Goldstein
,
R. J.
, and
Cho
,
H. H.
,
1995
, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
,
10
(
4
), pp.
416
434
.10.1016/0894-1777(94)00071-F
24.
Kreith
,
F.
,
Taylor
,
J. H.
, and
Chong
,
J. P.
,
1959
, “
Heat and Mass Transfer From a Rotating Disk
,”
ASME J. Heat Transfer-Trans. ASME
,
81
(
2
), pp.
95
103
.10.1115/1.4008145
25.
Janotková
,
E.
, and
Pavelek
,
M.
,
1986
, “
A Naphthalene Sublimation Method for Predicting Heat Transfer From a Rotating Surface (Naftalenová Sublimační Metoda Pro Určování Přestupu Tepla z Rotujících Povrchů je Ověřena na Rotujícím Disku)
,”
Strojnícky Časopis
,
37
(
3
), pp.
381
393
(In Czech).
26.
Shevchuk
,
I. V.
,
Saniei
,
N.
, and
Yan
,
X. T.
,
2003
, “
Impingement Heat Transfer Over a Rotating Disk: Integral Method
,”
J. Thermophys. Heat Transfer
,
17
(
2
), pp.
291
293
.10.2514/2.6767
27.
Shevchuk
,
I. V.
,
2008
, “
A New Evaluation Method for Nusselt Numbers in Naphthalene Sublimation Experiments in Rotating-Disk Systems
,”
Heat Mass Transfer
,
44
(
11
), pp.
1409
1415
.10.1007/s00231-008-0376-6
28.
Shevchuk
,
I. V.
,
2016
,
Modelling of Convective Heat and Mass Transfer in Rotating Flows
,
Springer International Publishing
,
Cham, Switzerland
.
29.
Touloukian
,
Y. S.
,
Liley
,
P. E.
, and
Saxena
,
S. C.
,
1970
,
Thermal Conductivity – Nonmetallic Liquids and Gases
,
IFI/Plenum
,
New York
.
30.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat Transfer – Part I: Mean and Root-Mean-Square Heat Transfer and Velocity Distributions
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3291
3301
.10.1016/j.ijheatmasstransfer.2007.01.044
31.
Trávníček
,
Z.
, and
Broučková
,
Z.
,
2019
, “
Characterization of Impingement Heat/Mass Transfer to the Synthetic Jet Generated by a Biomimetic Actuator
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
4
), p.
042203
.10.1115/1.4042781
32.
Trávníček
,
Z.
, and
Vít
,
T.
,
2015
, “
Impingement Heat/Mass Transfer to Hybrid Synthetic Jets and Other Reversible Pulsating Jets
,”
Int. J. Heat Mass Transfer
,
85
, pp.
473
487
.10.1016/j.ijheatmasstransfer.2015.01.125
33.
Falco
,
R. E.
, and
Gendrich
,
C. P.
,
1988
, “
The Turbulence Burst Detection Algorithm of Z. Zarić
,”
Proceedings of the Near-Wall Turbulence, Zoran Zarić Memorial Conference, Hemisphere
,
S. J.
Kline
and
N. H.
Afgan
, ed., Washington, DC, pp.
911
931
.
34.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single–Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.https://archive.org/details/sim_mechanical-engineering_1953-01_75_1
35.
McNaughton
,
K. J.
, and
Sinclair
,
C. G.
,
1966
, “
Submerged Jets in Short Cylindrical Flow Vessels
,”
J. Fluid Mech.
,
25
(
2
), pp.
367
375
.10.1017/S0022112066001708
36.
Giralt
,
F.
,
Chia
,
C. -J.
, and
Trass
,
O.
,
1977
, “
Characterization of the Impingement Region in an Axisymmetric Turbulent Jet
,”
Ind. Eng. Chem. Fundam.
,
16
(
1
), pp.
21
28
.10.1021/i160061a007
37.
Guo
,
Y.
, and
Wood
,
D. H.
,
2002
, “
Measurements in the Vicinity of a Stagnation Point
,”
Exp. Therm. Fluid Sci.
,
25
(
8
), pp.
605
614
.10.1016/S0894-1777(01)00115-7
38.
Gau
,
C.
,
Shen
,
C. H.
, and
Wang
,
Z. B.
,
2009
, “
Peculiar Phenomenon of Micro–Free–Jet Flow
,”
Phys. Fluids
,
21
(
9
), p.
092001
.10.1063/1.3224012
39.
Popiel
,
C. O.
,
van der Meer
,
T. H.
, and
Hoogendoorn
,
C. J.
,
1980
, “
Convective Heat Transfer on a Plate in an Impinging Round Hot Gas Jet of Low Reynolds Number
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1055
1068
.10.1016/0017-9310(80)90170-2
40.
Shadlesky
,
P. S.
,
1983
, “
Stagnation Point Heat Transfer for Jet Impingement to a Plane Surface
,”
Aiaa J.
,
21
(
8
), pp.
1214
1215
.10.2514/3.8231
You do not currently have access to this content.