Abstract

Accurate prediction of liquid–vapor phase change phenomena is critical in the design of thin vapor chambers and microheat pipes for the thermal management of miniaturized electronic systems. In view of this, we have considered the heat and mass transfer between two-liquid meniscuses separated by a thin gap of its own vapor. Assuming the heat and mass flow are to be steady and one-dimensional, analytic solutions are obtained to the linearized equations from the regularized 26-moment framework. Our analytic solutions provide excellent predictions for the effective heat conductivity of a dilute gas with those from the molecular dynamics (MD) and Boltzmann equation where Fourier's law fails. We also verified that the predicted heat and mass flow rates over the whole range of the Knudsen number are consistent with the kinetic theory of gases. Further, the model has been used to predict the effect of evaporation and accommodation coefficients on the heat and mass transfer between the liquid layers.

References

1.
Liu
,
T.
,
Dunham
,
M. T.
,
Jung
,
K. W.
,
Chen
,
B.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2020
, “
Characterization and Thermal Modeling of a Miniature Silicon Vapor Chamber for Die-Level Heat Redistribution
,”
Int. J. Heat Mass Transfer
,
152
, p.
119569
.10.1016/j.ijheatmasstransfer.2020.119569
2.
Luo
,
Y.
,
Tang
,
Y.
,
Zhang
,
X.
,
Wang
,
H.
,
Zhou
,
G.
, and
Bai
,
P.
,
2022
, “
A Novel Composite Vapor Chamber for Battery Thermal Management System
,”
Energy Convers. Manage.
,
254
, p.
115293
.10.1016/j.enconman.2022.115293
3.
Cheng
,
X.
,
Yang
,
G.
, and
Wu
,
J.
,
2021
, “
Recent Advances in the Optimization of Evaporator Wicks of Vapor Chambers: From Mechanism to Fabrication Technologies
,”
Appl. Therm. Eng.
,
188
, p.
116611
.10.1016/j.applthermaleng.2021.116611
4.
Völklein
,
F.
,
Grau
,
M.
,
Meier
,
A.
,
Hemer
,
G.
,
Breuer
,
L.
, and
Woias
,
P.
,
2013
, “
Optimized MEMS Pirani Sensor With Increased Pressure Measurement Sensitivity in the Fine and High Vacuum Regime
,”
J. Vac. Sci. Technol., A
,
31
(
6
), p.
061604
.10.1116/1.4819783
5.
Vo
,
D. D.
,
Moradi
,
R.
,
Barzegar Gerdroodbary
,
M.
, and
Ganji
,
D.
,
2019
, “
Measurement of Low-Pressure Knudsen Force With Deflection Approximation for Gas Detection
,”
Results Phys.
,
13
, p.
102257
.10.1016/j.rinp.2019.102257
6.
Cercignani
,
C.
,
2000
,
Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations
,
Cambridge University Press
,
Cambridge, UK
.
7.
Struchtrup
,
H.
,
2005
,
Macroscopic Transport Equations for Rarefied Gas Flows
,
Springer
,
Berlin
.
8.
Sone
,
Y.
,
Ohwada
,
T.
, and
Aoki
,
K.
,
1991
, “
Evaporation and Condensation of a Rarefied Gas Between Its Two Parallel Plane Condensed Phases With Different Temperatures and Negative Temperature-Gradient Phenomenon–Numerical Analysis of the Boltzmann Equation for Hard-Sphere Molecules
,”
Mathematical Aspects of Fluid and Plasma Dynamics
,
G.
Toscani
,
V.
Boffi
, and
S.
Rionero
, eds.,
Springer
,
Berlin
, pp.
186
202
.10.1007/BFb0091368
9.
Yoshio
,
S.
,
2007
,
Molecular Gas Dynamics: Theory, Techniques, and Applications
,
Birkhäuser
,
Boston, MA
.10.1007/978-08176-4573-1_3
10.
Gu
,
X. J.
, and
Emerson
,
D. R.
,
2014
, “
Linearized-Moment Analysis of the Temperature Jump and Temperature Defect in the Knudsen Layer of a Rarefied Gas
,”
Phys. Rev. E
,
89
(
6
), p.
063020
.10.1103/PhysRevE.89.063020
11.
Torrilhon
,
M.
,
2016
, “
Modeling Nonequilibrium Gas Flow Based on Moment Equations
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
429
458
.10.1146/annurev-fluid-122414-034259
12.
Singh
,
N.
, and
Agrawal
,
A.
,
2016
, “
Onsager's-Principle-Consistent 13-Moment Transport Equations
,”
Phys. Rev. E
,
93
(
6
), p.
063111
.10.1103/PhysRevE.93.063111
13.
Gu
,
X.
, and
Emerson
,
D.
,
2009
, “
A High-Order Moment Approach for Capturing Non Equilibrium Phenomena in the Transition Regime
,”
J. Fluid Mech.
,
636
, pp.
177
216
.10.1017/S002211200900768X
14.
Rana
,
A.
,
Gupta
,
V.
, and
Struchtrup
,
H.
,
2018
, “
Coupled Constitutive Relations: A Second Law Based Higher-Order Closure for Hydrodynamics
,”
Proc. R. Soc. A
,
474
(
2218
), p.
20180323
.10.1098/rspa.2018.0323
15.
Struchtrup
,
H.
, and
Torrilhon
,
M.
,
2003
, “
Regularization of Grad's 13 Moment Equations: Derivation and Linear Analysis
,”
Phys. Fluids
,
15
(
9
), pp.
2668
2680
.10.1063/1.1597472
16.
Taheri
,
P.
,
Rana
,
A.
,
Torrilhon
,
M.
, and
Struchtrup
,
H.
,
2009
, “
Macroscopic Description of Steady and Unsteady Rarefaction Effects in Boundary Value Problems of Gas Dynamics
,”
Continuum Mech. Thermodyn.
,
21
(
6
), pp.
423
443
.10.1007/s00161-009-0115-3
17.
Rana
,
A.
,
Lockerby
,
D.
, and
Sprittles
,
J.
,
2018
, “
Evaporation-Driven Vapour Microflows: Analytical Solutions From Moment Methods
,”
J. Fluid Mech.
,
841
, pp.
962
988
.10.1017/jfm.2018.85
18.
Rana
,
A.
,
Lockerby
,
D.
, and
Sprittles
,
J.
,
2019
, “
Lifetime of a Nanodroplet: Kinetic Effects and Regime Transitions
,”
Phys. Rev. Lett.
,
123
(
15
), p.
154501
.10.1103/PhysRevLett.123.154501
19.
Rana
,
A.
,
Gupta
,
V.
,
Sprittles
,
J.
, and
Torrilhon
,
M.
,
2021
, “
H-Theorem and Boundary Conditions for the Linear R26 Equations: Application to Flow Past an Evaporating Droplet
,”
J. Fluid Mech.
,
924
, p.
A16
.10.1017/jfm.2021.622
20.
Graur
,
I. A.
,
Gatapova
,
E. Y.
,
Wolf
,
M.
, and
Batueva
,
M. A.
,
2021
, “
Non-Equilibrium Evaporation: 1D Benchmark Problem for Single Gas
,”
Int. J. Heat Mass Transfer
,
181
, p.
121997
.10.1016/j.ijheatmasstransfer.2021.121997
21.
Zhou
,
G.
,
Zhou
,
J.
,
Huai
,
X.
,
Zhou
,
F.
, and
Jiang
,
Y.
,
2022
, “
A Two-Phase Liquid Immersion Cooling Strategy Utilizing Vapor Chamber Heat Spreader for Data Center Servers
,”
Appl. Therm. Eng.
,
210
, p.
118289
.10.1016/j.applthermaleng.2022.118289
22.
Lim
,
H.
, and
Lee
,
J.
,
2021
, “
Flat Plate Two-Phase Heat Spreader on the Thermal Management of High-Power Electronics: A Review
,”
J. Mech. Sci. Technol.
,
35
(
11
), pp.
4801
4814
.10.1007/s12206-021-1042-x
23.
Chen
,
H.
,
Zheng
,
F.
,
Cheng
,
W.
,
Tao
,
P.
,
Song
,
C.
,
Shang
,
W.
,
Fu
,
B.
, and
Deng
,
T.
,
2021
, “
Low Thermal Expansion Metal Composite-Based Heat Spreader for High Temperature Thermal Management
,”
Mater. Des.
,
208
, p.
109897
.10.1016/j.matdes.2021.109897
24.
Wilke
,
K. L.
,
Barabadi
,
B.
,
Lu
,
Z.
,
Zhang
,
T.
, and
Wang
,
E. N.
,
2017
, “
Parametric Study of Thin Film Evaporation From Nanoporous Membranes
,”
Appl. Phys. Lett.
,
111
(
17
), p.
171603
.10.1063/1.4997945
25.
Vaartstra
,
G.
,
Zhang
,
L.
,
Lu
,
Z.
,
Díaz-Marín
,
C. D.
,
Grossman
,
J. C.
, and
Wang
,
E. N.
,
2020
, “
Capillary-Fed, Thin Film Evaporation Devices
,”
J. Appl. Phys.
,
128
(
13
), p.
130901
.10.1063/5.0021674
26.
Ohwada
,
T.
,
Aoki
,
K.
, and
Yoshio
,
S.
,
1989
, “
Heat Transfer and Temperature Distribution in a Rarefied Gas Between Two Parallel Plates With Different Temperatures: Numerical Analysis of the Boltzmann Equation for a Hard Sphere Molecule
,”
Rarefied Gas Dynamics: Theoretical and Computational Techniques
,
AIAA
,
Washington, DC
, pp.
70
81
.10.2514/5.9781600865923.0070.0081
27.
Rabani
,
R.
, and
Pishevar
,
A.
,
2021
, “
Heat Transfer Through the Interface of Solids and Nanoconfined Gas
,” arXiv:2108.06689.
28.
Stewart
,
M.
,
2017
, “
Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at the Liquid/Vapor Interface
,”
AIAA
Paper No. 2017-4916.10.2514/6.2017-4916
29.
Struchtrup
,
H.
, and
Frezzotti
,
A.
,
2019
, “
Grad's 13 Moments Approximation for Enskog-Vlasov Equation
,”
AIP Conf. Proc.
,
2132
(
1
), p.
120007
.10.1063/1.5119620
You do not currently have access to this content.