Abstract

This paper provides important insights into immiscible fluids models, which can exhibit complex nonlinear behavior due to variations in thickness, viscosity, thermal conductivity, and jump velocity fields across the interface surface. These characteristics will be used to model our problem as a switching dynamical system. The bifurcation tools for switching systems will be used to create a systematic computational analysis of the rise dynamics of the behavior of solutions influenced by the interface surface. This technique is applied to investigate the flow and heat transfer behavior of two immiscible fluids for a recently proposed model. The explicit formula for tracking the accurate behavior of the interface surface, which is used as a critical part of the bifurcation analysis, is provided. The results show that the existence of heteroclinic connections and switching stability of multiple equilibria are the primary causes of the formation of a novel class of trapping phenomena. The biological significance of our results on flow and heat transfer characteristics is discussed.

References

1.
Yu
,
H. S.
, and
Sparrow
,
E. M.
,
1969
, “
Experiments on Two-Component Stratified Flow in a Horizontal Duct
,”
ASME J. Heat Transfer-Trans. ASME
,
91
(
1
), pp.
51
58
.10.1115/1.3580119
2.
Huang
,
H.
, and
Zhou
,
X.
,
2009
, “
The Impact of Normal Magnetic Fields on Instability of Thermocapillary Convection in a Two-Layer Fluid System
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
6
), p.
062502
.10.1115/1.3084211
3.
Fischer
,
M.
,
Juric
,
D.
, and
Poulikakos
,
D.
,
2010
, “
Large Convective Heat Transfer Enhancement in Microchannels With a Train of Coflowing Immiscible or Colloidal Droplets
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
11
), p.
112402
.10.1115/1.4002031
4.
Liu
,
B.
,
Cai
,
J.
,
Huai
,
X.
, and
Li
,
F.
,
2014
, “
Cavitation Bubble Collapse Near a Heated Wall and Its Effect on the Heat Transfer
,”
J. Heat Transfer-Trans. ASME
,
136
(
2
), p.
022901
.10.1115/1.4024071
5.
Niazi
,
M. D.
, and
Xu
,
H.
,
2020
, “
Modelling Two-Layer Nanofluid Flow in a Micro-Channel With Electro-Osmotic Effects by Means of Buongiorno's Model
,”
Appl. Math. Mech.
,
41
(
1
), pp.
83
104
.10.1007/s10483-020-2558-7
6.
Abd Elmaboud
,
Y.
,
Abdelsalam
,
S. I.
,
Mekheimer
,
K. S.
, and
Vafai
,
K.
,
2019
, “
Electromagnetic Flow for Two-Layer Immiscible Fluids
,”
Eng. Sci. Technol., Int. J.
,
22
(
1
), pp.
237
248
.10.1016/j.jestch.2018.07.018
7.
Fusi
,
L.
, and
Farina
,
A.
,
2016
, “
Flow of a Bingham Fluid in a Non Symmetric Inclined Channel
,”
J. Non-Newtonian Fluid Mech.
,
238
, pp.
24
32
.10.1016/j.jnnfm.2016.04.007
8.
Kavitha
,
A.
,
Hemadri Reddy
,
R.
,
Saravana
,
R.
, and
Sreenadh
,
S.
,
2017
, “
Peristaltic Transport of a Jeffrey Fluid in Contact With a Newtonian Fluid in an Inclined Channel
,”
Ain Shams Eng. J.
,
8
(
4
), pp.
683
687
.10.1016/j.asej.2015.10.014
9.
Fusi
,
L.
,
Farina
,
A.
, and
Saccomandi
,
G.
,
2021
, “
Linear Stability Analysis of the Poiseuille Flow of a Stratified Non-Newtonian Suspension: Application to Microcirculation
,”
J. Non-Newtonian Fluid Mech.
,
287
, p.
104464
.10.1016/j.jnnfm.2020.104464
10.
Misra
,
J. C.
, and
Pandey
,
S. K.
,
2002
, “
Peristaltic Transport of Blood in Small Vessels: Study of a Mathematical Model
,”
Comput. Math. Appl.
,
43
(
8–9
), pp.
1183
1193
.10.1016/S0898-1221(02)80022-0
11.
Tripathi
,
D.
,
Jhorar
,
R.
,
Borode
,
A.
, and
Bég
,
O. A.
,
2018
, “
Three-Layered Electro-Osmosis Modulated Blood Flow Through a Microchannel
,”
Eur. J. Mech. B
,
72
, pp.
391
402
.10.1016/j.euromechflu.2018.03.016
12.
Vajravelu
,
K.
,
Sreenadh
,
S.
, and
Babu
,
V. R.
,
2006
, “
Peristaltic Transport of a Herschel-Bulkley Fluid in Contact With a Newtonian Fluid
,”
Q. Appl. Math.
,
64
(
4
), pp.
593
604
.10.1090/S0033-569X-06-01020-9
13.
Hosham
,
H.
, and
Sellami
,
T.
,
2022
, “
New Insights Into the Peristaltic Flow Behavior of Thermal Nanofluid Systems
,”
Int. J. Appl. Comput. Math.
,
8
(
4
), p.
182
.10.1007/s40819-022-01393-3
14.
Sayed
,
H. M.
, and
Hosham
,
H. A.
,
2022
, “
Dynamics and Bifurcations of Non-Newtonian Au-Cu/Blood Hybrid Nanofluid Model of Electrokinetic Flow in Asymmetrically Tapered Wave Microchannel
,”
Waves Random Complex Media
, pp.
1
18
. 10.1080/17455030.2022.2078018
15.
Ali
,
N.
,
Hussain
,
S.
, and
Ullah
,
K.
,
2020
, “
Theoretical Analysis of Two-Layered Electro-Osmotic Peristaltic Flow of FENE-P Fluid in an Axisymmetric Tube
,”
Phys. Fluids
,
32
(
2
), p.
023105
.10.1063/1.5132863
16.
Sankranthi
,
V. K.
, and
Satya
,
S. A. N.
,
2021
, “
Influence of Peristalsis on the Convective Flow of Two Immiscible Fluids in a Vertical Channel
,”
Heat Transfer
,
50
(
5
), pp.
4757
4774
.10.1002/htj.22100
17.
Alrbee
,
K.
,
Muzychka
,
Y. S.
, and
Duan
,
X.
,
2020
, “
Separated Phase Analysis of Heat Transfer in Liquid-Liquid Taylor Flow in a Miniscale Straight Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
12
), p.
122001
.10.1115/1.4048470
18.
Rao
,
A. R.
, and
Usha
,
S.
,
1995
, “
Peristaltic Transport of Two Immiscible Viscous Fluids in a Circular Tube
,”
J. Fluid Mech.
,
298
, pp.
271
285
.10.1017/S0022112095003302
19.
Misra
,
J. C.
, and
Pandey
,
S. K.
,
1999
, “
Peristaltic Transport of a Non-Newtonian Fluid With a Peripheral Layer
,”
Int. J. Eng. Sci.
,
37
(
14
), pp.
1841
1858
.10.1016/S0020-7225(99)00005-1
20.
Farooq
,
U.
, and
Zhi-Liang
,
L.
,
2014
, “
Nonlinear Heat Transfer in a Two-Layer Flow With Nanofluids by OHAM
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
2
), p.
021702
.10.1115/1.4025432
21.
Vajravelu
,
K.
,
Prasad
,
K. V.
, and
Abbasbandy
,
S.
,
2013
, “
Convective Transport of Nanoparticles in Multi-Layer Fluid Flow
,”
Appl. Math. Mech.
,
34
(
2
), pp.
177
188
.10.1007/s10483-013-1662-6
22.
Bashaga
,
G.
, and
Shaw
,
S.
,
2021
, “
Shear-Augmented Solute Dispersion During Drug Delivery for Three-Layer Flow Through Microvessel Under Stress Jump and Momentum Slip-Darcy Model
,”
Appl. Math. Mech.
,
42
(
6
), pp.
901
914
.10.1007/s10483-021-2737-8
23.
Di Bernardo
,
M.
,
Budd
,
C. J.
,
Champneys
,
A. R.
,
Kowalczyk
,
P.
,
Nordmark
,
A. B.
,
Tost
,
G. O.
, and
Piiroinen
,
T.
,
2008
, “
Bifurcations in Nonsmooth Dynamical Systems
,”
SIAM Rev.
,
50
(
4
), pp.
629
701
.10.1137/050625060
24.
Difonzo
,
F. V.
,
2022
, “
Isochronous Attainable Manifolds for Piecewise Smooth Dynamical Systems
,”
Qual. Theory Dyn. Syst.
,
21
(
1
), pp.
1
26
.10.1007/s12346-021-00536-z
25.
Hosham
,
H. A.
,
2020
, “
Bifurcation of Limit Cycles in Piecewise-Smooth Systems With Intersecting Discontinuity Surfaces
,”
Nonlinear Dyn.
,
99
(
3
), pp.
2049
2063
.10.1007/s11071-019-05400-z
26.
Hosham
,
H. A.
,
2020
, “
Nonlinear Behavior of a Novel Switching Jerk System
,”
Int. J. Bifurcation Chaos
,
30
(
14
), p.
2050202
.10.1142/S0218127420502028
27.
Hosham
,
H. A.
, and
Hafez
,
N. M.
,
2021
, “
Bifurcation Phenomena in the Peristaltic Transport of Non-Newtonian Fluid With Heat and Mass Transfer Effects
,”
J. Appl. Math. Comput.
,
67
(
1–2
), pp.
275
299
.10.1007/s12190-020-01477-7
28.
Hosham
,
H. A.
, and
Hafez
,
N. M.
,
2022
, “
Global Dynamics and Bifurcation Analysis for the Peristaltic Transport Through Nonuniform Channels
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
6
), p.
061001
.10.1115/1.4053668
29.
Dhooge
,
A.
,
Govaerts
,
W.
,
Kuznetsov
,
Y. A.
,
Meijer
,
H. G.
, and
Sautois
,
B.
,
2008
, “
New Features of the Software MatCont for Bifurcation Analysis of Dynamical Systems
,”
Math. Comput. Model. Dyn. Syst.
,
14
(
2
), pp.
147
175
.10.1080/13873950701742754
You do not currently have access to this content.