Abstract

The generalized integral transform technique (GITT) is reviewed as a computational–analytical methodology in linear and nonlinear convection–diffusion problems, based on eigenfunction expansions extracted from characteristic differential operators, coefficients, and boundary conditions present in the original partial differential problem formulation. Here, the emphasis is on the employment of nonclassical eigenvalue problems as the expansion basis, which do not fall into the more usual framework of Sturm–Liouville problems. The goal is to enable or improve the eigenfunction expansions convergence, by incorporating more information from the original operators into the chosen eigenvalue problem, while requiring the handling of such a more involved expansion base. In this concern, the proposed differential eigenvalue problem can itself be handled by the GITT, leading to an algebraic eigensystem analysis. Different classes of nonclassical eigenvalue problems are then reviewed and associated with typical applications in heat and mass transfer. Representative test cases are then chosen to illustrate the extended methodology and demonstrate the convergence rates attainable by this enhanced hybrid solution path.

References

1.
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
,
2006
, “
Hybrid Methods and Symbolic Computations
,”
Handbook of Numerical Heat Transfer
, 2nd ed.,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
, eds.,
Wiley
,
New York
, pp.
493
522
.
2.
Cotta
,
R. M.
,
Knupp
,
D. C.
,
Quaresma
,
J. N. N
, et al.,
2018
, “
Analytical Methods in Heat Transfer
,”
Handbook of Thermal Science and Engineering
, Vol.
1
,
F. A.
Kulacki
, ed.,
Springer
,
Cham, Switzerland
, pp.
61
126
.
3.
Cotta
,
R. M.
,
Knupp
,
D. C.
,
Lisboa
,
K. M.
,
Naveira-Cotta
,
C. P.
,
Quaresma
,
J. N. N.
,
Zotin
,
J. L. Z.
, and
Miyagawa
,
H. K.
,
2020
, “
Integral Transform Benchmarks of Diffusion, Convection-Diffusion, and Conjugated Problems in Complex Domains
,”
50 Years of CFD in Engineering Sciences - A Commemorative Volume in Memory of D. Brian Spalding
,
A. K.
Runchal
, ed.,
Springer-Verlag
,
Singapore
, pp.
719
750
.
4.
Luikov
,
A. V.
,
1968
,
Analytical Heat Diffusion Theory
,
Academic Press
,
New York
.
5.
Özisik
,
M. N.
,
1968
,
Boundary Value Problems of Heat Conduction
,
Int. Textbooks Co
.,
New York
.
6.
Sneddon
,
IN.
,
1972
,
Use of Integral Transforms
,
McGraw-Hill
,
New York
.
7.
Özisik
,
M. N.
,
1980
,
Heat Conduction
,
Wiley
,
New York
.
8.
Luikov
,
A. V.
,
1980
,
Heat and Mass Transfer
,
Mir Publishers
,
Moscow, Russia
.
9.
Mikhailov
,
M. D.
, and
Özisik
,
M. N.
,
1984
,
Unified Analysis and Solutions of Heat and Mass Diffusion
,
Wiley
,
New York
.
10.
Özisik
,
M. N.
, and
Murray
,
R. L.
,
1974
, “
On the Solution of Linear Diffusion Problems With Variable Boundary Condition Parameters
,”
ASME J. Heat Transfer
,
96
(
1
), pp.
48
51
.10.1115/1.3450139
11.
Mikhailov
,
M. D.
,
1975
, “
On the Solution of the Heat Equation With Time Dependent Coefficient
,”
Int. J. Heat Mass Transfer
,
18
(
2
), pp.
344
345
.10.1016/0017-9310(75)90170-2
12.
Cotta
,
R. M.
, and
Özişik
,
M. N.
,
1986
, “
Laminar Forced Convection in Ducts With Periodic Variation of Inlet Temperature
,”
Int. J. Heat Mass Transfer
,
29
(
10
), pp.
1495
1501
.10.1016/0017-9310(86)90064-5
13.
Cotta
,
R. M.
,
1990
, “
Hybrid Numerical-Analytical Approach to Nonlinear Diffusion Problems
,”
Numer. Heat Transfer, Part B
,
17
(
2
), pp.
217
226
.10.1080/10407799008961740
14.
Cotta
,
R. M.
,
1993
,
Integral Transforms in Computational Heat and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
15.
Cotta
,
R. M.
,
1994
, “
Benchmark Results in Computational Heat and Fluid Flow: The Integral Transform Method
,”
Int. J. Heat Mass Transfer
,
37
(
Suppl. 1
), pp.
381
393
.10.1016/0017-9310(94)90038-8
16.
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
,
1997
,
Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation
,
Wiley-Interscience
,
New York
.
17.
Cotta
,
R. M.
,
1998
,
The Integral Transform Method in Thermal-Fluid Sciences and Engineering
,
Begell House
,
New York
.
18.
Cotta
,
R. M.
,
Knupp
,
D. C.
, and
Naveira-Cotta
,
C. P.
,
2016
,
Analytical Heat and Fluid Flow in Microchannels and Microsystems
, Mechanical Engineering Series,
Springer-Verlag
,
Cham, Switzerland
.
19.
Cotta
,
R. M.
,
Naveira-Cotta
,
C. P.
,
Knupp
,
D. C.
,
Zotin
,
J. L. Z.
,
Pontes
,
P. C.
, and
Almeida
,
A. P.
,
2018
, “
Recent Advances in Computational-Analytical Integral Transforms for Convection-Diffusion Problems
,”
Heat Mass Transfer
,
54
(
8
), pp.
2475
2496
.10.1007/s00231-017-2186-1
20.
Cotta
,
R. M.
,
Lisboa
,
K. M.
,
Curi
,
M. F.
,
Balabani
,
S.
,
Quaresma
,
J. N. N.
,
Pérez Guerrero
,
J. S.
,
Macêdo
,
E. N.
, and
Amorim
,
N. S.
,
2019
, “
A Review of Hybrid Integral Transform Solutions in Fluid Flow Problems With Heat or Mass Transfer and Under Navier-Stokes Equations Formulations
,”
Numer. Heat Transfer, Part B
,
76
(
2
), pp.
60
87
.10.1080/10407790.2019.1642715
21.
Mikhailov
,
M. D.
, and
Özişik
,
M. N.
,
1985
, “
Unified Solutions of Heat Diffusion in a Finite Region Involving a Surface Film of Finite Heat Capacity
,”
Int. J. Heat Mass Transfer
,
28
(
5
), pp.
1039
1045
.10.1016/0017-9310(85)90286-8
22.
Mikhailov
,
M. D.
, and
Özişik
,
M. N.
,
1981
, “
On General Solution of Heat Conduction in an Anisotropic Medium
,”
Lett. Heat Mass Transfer
,
8
(
4
), pp.
329
335
.10.1016/0094-4548(81)90048-5
23.
Mikhailov
,
M. D.
, and
Özişik
,
M. N.
,
1986
, “
Unified Finite Integral Transform Analysis
,”
J. Franklin Inst.
,
321
(
6
), pp.
299
307
.10.1016/0016-0032(86)90016-5
24.
Vick
,
B.
, and
Özişik
,
M. N.
,
1981
, “
An Exact Analysis of Low Peclet Number Heat Transfer in Laminar Flow With Axial Conduction
,”
Lett. Heat Mass Transfer
,
8
(
1
), pp.
1
10
.10.1016/0094-4548(81)90002-3
25.
Oliveira
,
M. C.
,
Ramos
,
R.
, and
Cotta
,
R. M.
,
1995
, “
On the Eigenvalues Basic to the Analytical Solution of Convective Heat Transfer With Axial Diffusion Effects
,”
Commun. Numer. Methods Eng.
,
11
(
4
), pp.
287
296
.10.1002/cnm.1640110402
26.
Aperecido
,
J. B.
,
Cotta
,
R. M.
, and
Özişik
,
M. N.
,
1989
, “
Analytical Solutions to Two-Dimensional Diffusion Type Problems in Irregular Geometries
,”
J. Franklin Inst.
,
326
(
3
), pp.
421
434
.10.1016/0016-0032(89)90021-5
27.
Sphaier
,
L. A.
, and
Cotta
,
R. M.
,
2000
, “
Integral Transform Analysis of Multidimensional Eigenvalue Problems Within Irregular Domains
,”
Numer. Heat Transfer, Part B
,
38
(
2
), pp.
157
175
.10.1080/104077900750034652
28.
Diniz
,
A. J.
,
Aparecido
,
J. B.
, and
Cotta
,
R. M.
,
1990
, “
Heat Conduction With Ablation in a Finite Slab
,”
Int. J. Heat Technol.
,
8
, pp.
30
43
.
29.
Sias
,
D. F.
,
Ruperti
,
N. J.
, Jr.
, and
Cotta
,
R. M.
,
2009
, “
Enhanced Convergence of Integral Transform Solution of Ablation Problems
,”
High Temp., High Pressures
,
38
(
2
), pp.
81
96
.http://www.oldcitypublishing.com/journals/hthp-home/hthp-issue-contents/hthp-volume-38-number-2-2009/hthp-38-2-p-81-96/
30.
Pérez Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
1992
, “
Integral Transform Method for Navier-Stokes Equations in Stream Function-Only Formulation
,”
Int. J. Numer. Methods Fluids
,
15
(
4
), pp.
399
409
.10.1002/fld.1650150403
31.
Figueira da Silva
,
E.
, and
Cotta
,
R. M.
,
1996
, “
Benchmark Results for Internal Forced Convection Through Integral Transformation
,”
Int. Commun. Heat Mass Transfer
,
23
(
7
), pp.
1019
1029
.10.1016/0735-1933(96)00084-X
32.
Knupp
,
D. C.
,
Cotta
,
R. M.
, and
Naveira-Cotta
,
C. P.
,
2015
, “
Fluid Flow and Conjugated Heat Transfer in Arbitrarily Shaped Channels Via Single Domain Formulation and Integral Transforms
,”
Int. J. Heat Mass Transfer
,
82
, pp.
479
489
.10.1016/j.ijheatmasstransfer.2014.11.007
33.
Almeida
,
A. P.
,
Naveira-Cotta
,
C. P.
, and
Cotta
,
R. M.
,
2020
, “
Transient Multidimensional Heat Conduction in Heterogeneous Media: Integral Transform With Single Domain Formulation
,”
Int. Comm. Heat Mass Transfer
,
117
, p.
104792
.10.1016/j.icheatmasstransfer.2020.104792
34.
Cotta
,
R. M.
,
Naveira-Cotta
,
C. P.
, and
Knupp
,
D. C.
,
2017
, “
Convective Eigenvalue Problems for Convergence Enhancement of Eigenfunction Expansions in Convection-Diffusion Problems
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021009
.10.1115/1.4037576
35.
Knupp
,
D. C.
,
Cotta
,
R. M.
, and
Naveira-Cotta
,
C. P.
,
2020
, “
Conjugated Heat Transfer Analysis Via Integral Transforms and Eigenvalue Problems
,”
J. Eng. Phys. Thermophys.
,
93
(
1
), pp.
65
77
.10.1007/s10891-020-02091-x
36.
Lisboa
,
K. M.
, and
Cotta
,
R. M.
,
2018
, “
Hybrid Integral Transforms for Flow Development in Ducts Partially Filled With Porous Media
,”
Proc. R. Soc. A
,
474
, pp.
1
20
.https://royalsocietypublishing.org/doi/10.1098/rspa.2017.0637
37.
Lisboa
,
K. M.
,
Su
,
J.
, and
Cotta
,
R. M.
,
2019
, “
Vector Eigenfunction Expansion in the Integral Transform Solution of Transient Natural Convection
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
8
), pp.
2684
2708
.10.1108/HFF-10-2018-0543
38.
Cotta
,
R. M.
,
Naveira-Cotta
,
C. P.
, and
Knupp
,
D. C.
,
2016
, “
Nonlinear Eigenvalue Problem in the Integral Transforms Solution of Convection-Diffusion With Nonlinear Boundary Conditions
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
3/4
), pp.
767
789
.10.1108/HFF-08-2015-0309
39.
Pontes
,
P. C.
,
Almeida
,
A. P.
,
Cotta
,
R. M.
, and
Naveira-Cotta
,
C. P.
,
2018
, “
Analysis of Mass Transfer in Hollow-Fiber Membrane Separator Via Nonlinear Eigenfunction Expansions
,”
Multiphase Sci. Technol.
,
30
(
2–3
), pp.
165
186
.10.1615/MultScienTechn.2018023739
40.
Wolfram
,
S.
,
2021
,
Mathematica Version 12.3
,
Wolfram Research
,
Champaign, IL
.
41.
Mikhailov
,
M. D.
, and
Cotta
,
R. M.
,
1994
, “
Integral Transform Method for Eigenvalue Problems
,”
Commun. Numer. Methods Eng.
,
10
(
10
), pp.
827
835
.10.1002/cnm.1640101009
42.
Naveira-Cotta
,
C. P.
,
Cotta
,
R. M.
,
Orlande
,
H. R. B.
, and
Fudym
,
O.
,
2009
, “
Eigenfunction Expansions for Transient Diffusion in Heterogeneous Media
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5029
5039
.10.1016/j.ijheatmasstransfer.2009.04.014
43.
Almeida
,
A. R.
, and
Cotta
,
R. M.
,
1996
, “
A Comparison of Convergence Acceleration Schemes for Eigenfunction Expansions of Partial Differential Equations
,”
Int. J. Numer. Methods Heat Fluid Flow
,
6
(
6
), pp.
85
97
.10.1108/09615539610131280
44.
Mikhailov
,
M. D.
, and
Cotta
,
R. M.
,
2001
, “
Convergence Acceleration of Integral Transform Solutions
,”
Hybrid Meth. Eng.
,
3
(
1
), pp.
89
94
.https://dl.begellhouse.com/journals/1a37c0433d303e8b,7f8a296f46d4bc01,33085c9e22f5bffd.html
45.
Cotta
,
R. M.
,
Naveira-Cotta
,
C. P.
, and
Knupp
,
D. C.
,
2016
, “
Enhanced Eigenfunction Expansions in Convection-Diffusion Problems With Multiscale Space Variable Coefficients
,”
Numer. Heat Transfer, Part A
,
70
(
5
), pp.
492
512
.10.1080/10407782.2016.1177342
46.
Cotta
,
R. M.
,
Knupp
,
D. C.
,
Naveira-Cotta
,
C. P.
,
Sphaier
,
L. A.
, and
Quaresma
,
J. N. N.
,
2014
, “
The Unified Integral Transforms (UNIT) Algorithm With Total and Partial Transformation
,”
Comput. Therm. Sci.
,
6
(
6
), pp.
507
524
.10.1615/ComputThermalScien.2014008663
47.
Carvalho
,
I. S.
,
Cotta
,
R. M.
,
Naveira-Cotta
,
C. P.
, and
Tiwari
,
M. K.
,
2021
, “
Hybrid Integral Transform Analysis of Supercooled Droplets Solidification
,”
Proc. R. Soc. A
,
477
, pp.
1
25
.https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0874
48.
Hirata
,
S. C.
,
Goyeau
,
B.
,
Gobin
,
D.
,
Carr
,
M.
, and
Cotta
,
R. M.
,
2007
, “
Linear Stability of Natural Convection in Superposed Fluid and Porous Layers: Influence of the Interfacial Modelling
,”
Int. J. Heat Mass Transfer
,
50
(
7–8
), pp.
1356
1367
.10.1016/j.ijheatmasstransfer.2006.09.038
49.
Hirata
,
S. C.
,
Goyeau
,
B.
,
Gobin
,
D.
,
Chandesris
,
M.
, and
Jamet
,
D.
,
2009
, “
Stability of Natural Convection in Superposed Fluid and Porous Layers: Equivalence of the One- and Two-Domain Approaches
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
533
536
.10.1016/j.ijheatmasstransfer.2008.07.045
50.
Knupp
,
D. C.
,
Naveira-Cotta
,
C. P.
, and
Cotta
,
R. M.
,
2012
, “
Theoretical Analysis of Conjugated Heat Transfer With a Single Domain Formulation and Integral Transforms
,”
Int. Commun. Heat Mass Transfer
,
39
(
3
), pp.
355
362
.10.1016/j.icheatmasstransfer.2011.12.012
51.
Knupp
,
D. C.
,
Naveira-Cotta
,
C. P.
, and
Cotta
,
R. M.
,
2013
, “
Conjugated Convection-Conduction Analysis in Microchannels With Axial Diffusion Effects and a Single Domain Formulation
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091401
.10.1115/1.4024425
52.
Knupp
,
D. C.
,
Cotta
,
R. M.
,
Naveira-Cotta
,
C. P.
, and
Kakaç
,
S.
,
2015
, “
Transient Conjugated Heat Transfer in Microchannels: Integral Transforms With Single Domain Formulation
,”
Int. J. Therm. Sci.
,
88
, pp.
248
257
.10.1016/j.ijthermalsci.2014.04.017
53.
Lisboa
,
K. M.
, and
Cotta
,
R. M.
,
2018
, “
On the Mass Transport in Membraneless Flow Batteries of Flow-by Configuration
,”
Int. J. Heat Mass Transfer
,
122
, pp.
954
966
.10.1016/j.ijheatmasstransfer.2018.02.002
54.
Lisboa
,
K. M.
,
Su
,
J.
, and
Cotta
,
R. M.
,
2018
, “
Single Domain Integral Transforms Analysis of Natural Convection in Cavities Partially Filled With Heat Generating Porous Medium
,”
Numer. Heat Transfer, Part A
,
74
(
3
), pp.
1068
1086
.10.1080/10407782.2018.1511141
55.
Knupp
,
D. C.
,
Mascouto
,
F. S.
,
Abreu
,
L. A. S.
,
Naveira-Cotta
,
C. P.
, and
Cotta
,
R. M.
,
2018
, “
Conjugated Heat Transfer in Circular Microchannels With Slip Flow and Axial Diffusion Effects
,”
Int. Commun. Heat Mass Transfer
,
91
, pp.
225
233
.10.1016/j.icheatmasstransfer.2017.12.003
56.
Silva
,
G. R.
,
Knupp
,
D. C.
,
Naveira-Cotta
,
C. P.
,
Cotta
,
R. M.
, and
Silva Neto
,
A. J.
,
2020
, “
Estimation of Slip Flow Parameters in Microscale Conjugated Heat Transfer Problem
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
5
), p.
263
.10.1007/s40430-020-02328-z
57.
Moon
,
P.
, and
Spencer
,
D. E.
,
1961
,
Field Theory for Engineers
,
Van Nostrand
,
Princeton, NJ
.
58.
Sphaier
,
L. A.
, and
Cotta
,
R. M.
,
2002
, “
Analytical and Hybrid Solutions of Diffusion Problems Within Arbitrarily Shaped Regions Via Integral Transforms
,”
Comput. Mech.
,
29
(
3
), pp.
265
276
.10.1007/s00466-002-0339-6
59.
Sphaier
,
L. A.
, and
Cotta
,
R. M.
,
2002
, “
Integral Transform Solutions of Diffusion and Eigenvalue Problems Within Arbitrarily Shaped Domains
,”
Proceedings of the 12th International Heat Transfer Conference (IHTC 12)
, Grenoble, France, Aug. 18–23, Paper No. 0908.
60.
Maia
,
C. R. M.
,
Aparecido
,
J. B.
, and
Milanez
,
L. F.
,
2006
, “
Heat Transfer in Laminar Flow of Non-Newtonian Fluids in Ducts of Elliptical Section
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1066
1072
.10.1016/j.ijthermalsci.2006.02.001
61.
Pinheiro
,
I. F.
,
Sphaier
,
L. A.
, and
Knupp
,
D. C.
,
2019
, “
Integral Transform Solution of Eigenvalue Problems Within Irregular Geometries: Comparative Analysis of Different Methodologies
,”
Numer. Heat Transfer, Part B
,
76
(
6
), pp.
329
350
.10.1080/10407790.2019.1665444
62.
Aparecido
,
J. B.
, and
Cotta
,
R. M.
,
1992
, “
Laminar Thermally Developing Flow Inside Right Triangular Ducts
,”
Appl. Sci. Res.
,
49
(
4
), pp.
355
368
.10.1007/BF00419981
63.
Barbuto
,
F. A. A.
, and
Cotta
,
R. M.
,
1997
, “
Integral Transformation of Elliptic Problems Within Irregular Domains: Fully Developed Channel Flow
,”
Int. J. Numer. Methods Heat Fluid Flow
,
7
(
8
), pp.
778
793
.10.1108/09615539710193065
64.
Cotta
,
R. M.
, and
Ramos
,
R.
,
1998
, “
Integral Transforms in the Two-Dimensional Nonlinear Formulation of Longitudinal Fins With Variable Profile
,”
Int. J. Numer. Methods Heat Fluid Flow
,
8
(
1
), pp.
27
42
.10.1108/09615539810197916
65.
Pérez Guerrero
,
J. S.
,
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
,
2000
, “
Simulation of Laminar Flow Inside Ducts of Irregular Geometry Using Integral Transforms
,”
Comput. Mech.
,
25
(
4
), pp.
413
420
.10.1007/s004660050488
66.
Monteiro
,
E. R.
,
Macêdo
,
E. N.
,
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
,
2010
, “
Laminar Flow and Convective Heat Transfer of Non-Newtonian Fluids in Doubly Connected Ducts
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2434
2448
.10.1016/j.ijheatmasstransfer.2010.01.040
67.
Miyagawa
,
H. K.
,
Quaresma
,
J. N. N.
,
Lisboa
,
K. M.
, and
Cotta
,
R. M.
,
2020
, “
Integral Transform Analysis of Convective Heat Transfer Within Wavy Walls Channels
,”
Numer. Heat Transfer, Part A
,
77
(
5
), pp.
460
481
.10.1080/10407782.2020.1713619
68.
Mikhailov
,
M. D.
, and
Cotta
,
R. M.
,
1990
, “
Unified Integral Transform Method
,”
J. Braz. Soc. Mech. Sci.
,
12
(
3
), pp.
301
310
.http://revistas.abcm.org.br/indexed/vol_xii_-_n_03_-_1990.pdf
69.
Mikhailov
,
M. D.
,
Özisik
,
M. N.
, and
Shishedjiev
,
B. K.
,
1982
, “
Diffusion in Heterogeneous Media
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
781
787
.10.1115/1.3245200
70.
Cotta
,
R. M.
,
Lisboa
,
K. M.
, and
Zotin
,
J. L. Z.
,
2020
, “
Integral Transforms for Flow and Transport in Continuum and Discrete Models of Fractured Heterogeneous Porous Media
,”
Adv. Water Resour.
,
142
, p.
103621
.10.1016/j.advwatres.2020.103621
71.
Lisboa
,
K. M.
,
Zotin
,
J. L. Z.
, and
Cotta
,
R. M.
,
2021
, “
Hybrid Solutions for Thermally Developing Flows in Channels Partially Filled With Porous Media
,”
Numer. Heat Transfer, Part B
,
79
(
4
), pp.
189
215
.10.1080/10407790.2020.1819700
72.
Mikhailov
,
M. D.
,
1973
, “
General Solutions of the Coupled Diffusion Equations
,”
Int. J. Eng. Sci.
,
11
(
2
), pp.
235
241
.10.1016/0020-7225(73)90049-9
73.
Alves
,
L. S. B.
,
Cotta
,
R. M.
, and
Pontes
,
J.
,
2002
, “
Stability Analysis of Natural Convection in Porous Cavities Through Integral Transforms
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1185
1195
.10.1016/S0017-9310(01)00231-9
74.
Sphaier
,
L. A.
, and
Barletta
,
A.
,
2014
, “
Unstable Mixed Convection in a Heated Horizontal Porous Channel
,”
Int. J. Therm. Sci.
,
78
, pp.
77
89
.10.1016/j.ijthermalsci.2013.12.002
75.
Sphaier
,
L. A.
,
Barletta
,
A.
, and
Celli
,
M.
,
2015
, “
Unstable Mixed Convection in a Heated Inclined Porous Channel
,”
J. Fluid Mech.
,
778
, pp.
428
450
.10.1017/jfm.2015.394
76.
Mikhailov
,
M. D.
,
1973
, “
General Solutions of the Diffusion Equations Coupled at Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
16
(
12
), pp.
2155
2164
.10.1016/0017-9310(73)90003-3
77.
Mikhailov
,
M. D.
, and
Shishedjiev
,
B. K.
,
1975
, “
Temperature and Moisture Distributions During Contact Drying of a Moist Porous Sheet
,”
Int. J. Heat Mass Transfer
,
18
(
1
), pp.
15
24
.10.1016/0017-9310(75)90003-4
78.
Mikhailov
,
M. D.
, and
Shishedjiev
,
B. K.
,
1976
, “
Coupled at Boundary Mass or Heat Transfer in Entrance Concurrent Flow
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
553
557
.10.1016/0017-9310(76)90169-1
79.
Lobo
,
P. D.
,
Mikhailov
,
M. D.
, and
Özisik
,
M. N.
,
1987
, “
On the Complex Eigenvalues of Luikov System of Equations
,”
Drying Technol.
,
5
(
2
), pp.
273
286
.10.1080/07373938708916540
80.
Ribeiro
,
J. W.
,
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
,
1993
, “
Integral Transform Solution of Luikov's Equations for Heat and Mass Transfer in Capillary Porous Media
,”
Int. J. Heat Mass Transfer
,
36
(
18
), pp.
4467
4475
.10.1016/0017-9310(93)90131-O
81.
Ribeiro
,
J. W.
, and
Cotta
,
R. M.
,
1995
, “
On the Solution of Nonlinear Drying Problems in Capillary Porous Media Through Integral Transformation of Luikov Equations
,”
Int. J. Numer. Methods Eng.
,
38
(
6
), pp.
1001
1020
.10.1002/nme.1620380609
82.
Conceição
,
R. S. G.
,
Macêdo
,
E. N.
,
Pereira
,
L. B. D.
, and
Quaresma
,
J. N. N.
,
2013
, “
Hybrid Integral Transform Solution for the Analysis of Drying in Spherical Capillary-Porous Solids Based on Luikov Equations With Pressure Gradient
,”
Int. J. Therm. Sci.
,
71
, pp.
216
236
.10.1016/j.ijthermalsci.2013.04.011
83.
Guigon
,
S. M.
,
Dantas
,
L. B.
,
Scofano Neto
,
F.
, and
Cotta
,
R. M.
,
1999
, “
Exact Solution of Luikov's Equations for Drying in Capillary Porous Media
,”
Hybrid Methods Eng.
,
1
(
4
), pp.
365
387
.https://dl.begellhouse.com/journals/1a37c0433d303e8b,38aa9f1f59956da6,09e33a8a18b9c391.html
84.
Cotta
,
R. M.
, and
Özisik
,
M. N.
,
1986
, “
Thermally Developing Concurrent-Flow Circular Double-Pipe Heat Exchanger Analysis
,”
Proceedings of the Eighth International Heat Transfer Conference
, San Francisco, CA, Aug. 17–22, pp.
2805
2810
.
85.
Soares
,
F. A.
,
Guedes
,
R. O. C.
, and
Scofano Neto
,
F.
,
2018
, “
Analysis of the Influence of Pellet-to-Cladding Gap on the Transient Heat Transfer in Nuclear Fuel Rods Via the Integral Transform Technique
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
, p.
308
.10.1007/s40430-018-1221-6
86.
Matt
,
C. F. T.
,
2015
, “
Transient Response of General One-Dimensional Distributed System Through Eigenfunction Expansion With an Implicit Filter Scheme
,”
Appl. Math. Modell.
,
39
(
9
), pp.
2470
2488
.10.1016/j.apm.2014.11.005
87.
Hirata, S. C., Couto, P., Lara, L. G., Cotta, R. M., 2009, Modelling and Hybrid Simulation of Slow Discharge Process of Adsorbed Methane Tanks,
Int. J. Thermal Sciences
, 48, pp. 1176–1183. 10.1016/j.ijthermalsci.2008.09.001
88.
Silva
,
E. M.
,
Quaresma
,
J. N. N.
,
Macêdo
,
E. N.
, and
Cotta
,
R. M.
,
2021
, “
Integral Transforms for Three-Dimensional Pumping in Confined, Leaky, and Unconfined Aquifers
,”
J. Hydrol. Hydromech.
,
69
(
3
), pp.
319
331
.10.2478/johh-2021-0020
89.
Mikhailov
,
M. D.
,
1977
, “
General Solution of Diffusion Processes in Solid-Liquid Extraction
,”
Int. J. Heat Mass Transfer
,
20
(
12
), pp.
1409
1415
.10.1016/0017-9310(77)90038-2
90.
Scofano Neto
,
F.
, and
Cotta
,
R. M.
,
1992
, “
Lumped-Differential Analysis of Concurrent Flow Double-Pipe Heat Exchanger
,”
Can. J. Chem. Eng.
,
70
(
3
), pp.
592
595
.10.1002/cjce.5450700325
91.
Scofano Neto
,
F.
, and
Cotta
,
R. M.
,
1992
, “
Counterflow Double-Pipe Heat Exchangers Analysis Through a Mixed Lumped-Differential Formulation
,”
Int. J. Heat Mass Transfer
,
35
(
7
), pp.
1723
1731
.10.1016/0017-9310(92)90142-F
92.
Scofano Neto
,
F.
, and
Cotta
,
R. M.
,
1993
, “
Improved Hybrid Lumped-Differential Formulation for Double-Pipe Heat Exchangers Analysis
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
921
927
.10.1115/1.2911388
93.
Isaza
,
P. A.
, and
Bussmann
,
M.
,
2021
, “
An Analytical Solution for Moving Bed Heat Exchangers Via Integral Transform Methods
,”
Heat Transfer Eng.
,
42
(
3–4
), pp.
215
222
.10.1080/01457632.2019.1699290
94.
Makaveev
,
B. R.
, and
Mikhailov
,
M. D.
,
2001
, “
An Eigenvalue Problem With Nonlinear Dependence of the Eigenvalue
,”
Hybrid Methods Eng.
,
3
(
4
), pp.
409
413
.10.1615/HybMethEng.v3.i4.70
95.
Bayazitoglu
,
Y.
, and
Ozisik
,
M. N.
,
1980
, “
On the Solution of Gräetz Type Problems With Axial Conduction
,”
Int. J. Heat Mass Transfer
,
23
(
10
), pp.
1399
1402
.10.1016/0017-9310(80)90214-8
96.
Gondim
,
R. R.
,
Macêdo
,
E. N.
, and
Cotta
,
R. M.
,
2007
, “
Hybrid Solution for Transient Internal Convection With Axial Diffusion: Integral Transforms With Local Instantaneous Filtering
,”
Int. J. Numer. Methods Heat Fluid Flow
,
17
(
4
), pp.
405
417
.10.1108/09615530710739176
97.
Sphaier
,
L. A.
,
Braga
,
N. R.
, Jr.
, and
Chalhub
,
D.
,
2021
, “
Analytical Solutions for Extended Gräetz Problem in Infinite Domains Via Integral Transforms
,”
Int. J. Therm. Sci.
,
170
, p.
107093
.10.1016/j.ijthermalsci.2021.107093
98.
Knupp
,
D. C.
,
Cotta
,
R. M.
, and
Naveira-Cotta
,
C. P.
,
2013
, “
Heat Transfer in Microchannels With Upstream-Downstream Regions Coupling and Wall Conjugation Effects
,”
Numer. Heat Transfer, Part B
,
64
(
5
), pp.
365
387
.10.1080/10407790.2013.810535
99.
Cotta
,
R. M.
,
Serfaty
,
R.
, and
Guedes
,
R. O. C.
,
1990
, “
Integral Transform Solution of a Class of Transient Convection-Diffusion Problems
,”
Proceedings of the International Conference on Advanced Computational Methods in Heat Transfer
, Southampton, UK, July 17–20, pp.
239
250
.
100.
Serfaty
,
R.
, and
Cotta
,
R. M.
,
1992
, “
Hybrid Analysis of Transient Nonlinear Convection-Diffusion Problems
,”
Int. J. Numer. Methods Heat Fluid Flow
,
2
(
1
), pp.
55
62
.10.1108/eb017479
101.
Leiroz
,
A. J. K.
, and
Cotta
,
R. M.
,
1993
, “
On the Solution on Nonlinear Elliptic Convection-Diffusion Problems Through the Integral Transform Method
,”
Numer. Heat Transfer, Part B
,
23
(
4
), pp.
401
411
.10.1080/10407799308914908
102.
Alves
,
L. S. B.
,
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
,
2001
, “
Covalidation of Hybrid Integral Transforms and Method of Lines in Nonlinear Convection-Diffusion With Mathematica
,”
J. Braz. Soc. Mech. Sci.
,
23
(
3
), pp.
303
319
.10.1590/S0100-73862001000300004
103.
Pérez Guerrero
,
J. S.
,
Pimentel
,
L. C. G.
,
Skaggs
,
T. H.
, and
van Genuchten
,
M. T.
,
2009
, “
Analytical Solution of the Advection-Diffusion Transport Equation Using a Change-of-Variable and Integral Transform Technique
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3297
3304
.10.1016/j.ijheatmasstransfer.2009.02.002
104.
Knupp
,
D. C.
,
Lisboa
,
K. M.
, and
Cotta
,
R. M.
,
2020
, “
Convective-Diffusive Eigenvalue Problem Bases for Integral Transform Solutions in Transport Phenomena
,”
Proceedings of the 18th Brazilian Congress of Thermal Sciences and Engineering
, Porto Alegre, RS, Brazil, Nov. 16–20, Paper No. ENC-2020-0292.
105.
Machado
,
H. A.
, and
Cotta
,
R. M.
,
1995
, “
Integral Transform Method for Boundary Layer Equations in Simultaneous Heat and Fluid Flow Problems
,”
Int. J. Numer. Methods Heat Fluid Flow
,
5
(
3
), pp.
225
237
.10.1108/EUM0000000004118
106.
Bolivar
,
M. A. H.
,
Lage
,
P. L. C.
, and
Cotta
,
R. M.
,
1998
, “
Integral Transform Solution of the Laminar Thermal Boundary Layer Problem for Flow Past Two-Dimensional and Axisymmetric Bodies
,”
Numer. Heat Transfer, Part A
,
33
(
7
), pp.
779
797
.10.1080/10407789808913966
107.
Cotta
,
R. M.
, and
Pimentel
,
L. C. G.
,
1998
, “
Developing Turbulent Duct Flow: Hybrid Solution Via Integral Transforms and Algebraic Models
,”
Int. J. Numer. Methods Heat Fluid Flow
,
8
(
1
), pp.
10
26
.10.1108/09615539810197907
108.
Lima
,
G. G. C.
,
Santos
,
C. A. C.
,
Haag
,
A.
, and
Cotta
,
R. M.
,
2007
, “
Integral Transform Solution of Internal Flow Problems Based on Navier-Stokes Equations and Primitive Variables Formulation
,”
Int. J. Numer. Methods Eng.
,
69
(
3
), pp.
544
561
.10.1002/nme.1780
109.
Pérez Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
1995
, “
Integral Transform Solution of Developing Laminar Duct Flow in Navier-Stokes Formulation
,”
Int. J. Numer. Methods Fluids
,
20
(
11
), pp.
1203
1213
.10.1002/fld.1650201102
110.
Pérez Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
1996
, “
Benchmark Integral Transform Results for Flow Over a Backward-Facing Step
,”
Comput. Fluids
,
25
(
5
), pp.
527
540
.10.1016/0045-7930(96)00005-9
111.
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
,
1997
, “
Integral Transform Method for the Navier-Stokes Equations in Steady Three-Dimensional Flow
,”
Proceedings of the Tenth ISTP - International Symposium on Transport Phenomena
, Kyoto, Japan, Nov., pp.
281
287
.
112.
Pereira
,
L. M.
,
Pérez Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
1998
, “
Integral Transformation of the Navier-Stokes Equations in Cylindrical Geometry
,”
Comput. Mech.
,
21
(
1
), pp.
60
70
.10.1007/s004660050283
113.
Pereira
,
L. M.
,
Pérez Guerrero
,
J. S.
,
Brazão
,
N.
, and
Cotta
,
R. M.
,
2002
, “
Compressible Flow and Heat Transfer in Ultracentrifuges: Hybrid Analysis Via Integral Transforms
,”
Int. J. Heat Mass Transfer
,
45
(
1
), pp.
99
112
.10.1016/S0017-9310(01)00122-3
114.
Meirovitch
,
L.
,
1967
,
Analytical Methods in Vibrations
,
MacMillan
,
New York
.
115.
Matt
,
C. F. T.
,
2009
, “
On the Application of Generalized Integral Transform Technique to Wind-Induced Vibrations on Overhead Conductors
,”
Int. J. Numer. Methods Eng.
,
78
(
8
), pp.
901
930
.10.1002/nme.2513
116.
Gu
,
J.
,
An
,
C.
,
Levi
,
C.
, and
Su
,
J.
,
2012
, “
Prediction of Vortex-Induced Vibration of Long Flexible Cylinders Modeled by a Coupled Nonlinear Oscillator: Integral Transform Solution
,”
J. Hydrodyn.
,
24
(
6
), pp.
888
898
.10.1016/S1001-6058(11)60317-X
117.
Matt
,
C. F. T.
,
2013
, “
Simulation of the Transverse Vibrations of a Cantilever Beam With an Eccentric Tip Mass in the Axial Direction Using Integral Transforms
,”
Appl. Math. Modell.
,
37
(
22
), pp.
9338
9354
.10.1016/j.apm.2013.04.038
118.
dos Reis
,
E. V. M.
,
Sphaier
,
L. A.
,
Nunes
,
L. C. S.
, and
Alves
,
L. S. B.
,
2018
, “
Dynamic Response of Free Span Pipelines Via Linear and Nonlinear Stability Analyses
,”
Ocean Eng.
,
163
, pp.
533
543
.10.1016/j.oceaneng.2018.06.002
119.
He
,
Y.
,
An
,
C.
, and
Su
,
J.
,
2020
, “
Generalized Integral Transform Solution for Free Vibration of Orthotropic Rectangular Plates With Free Edges
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
, p.
183
.10.1007/s40430-020-2271-0
120.
Cordeiro
,
C. E. Z.
,
Stutz
,
L. T.
,
Knupp
,
D. C.
, and
Matt
,
C. F. T.
,
2022
, “
Generalized Integral Transform and Hamiltonian Monte Carlo for Bayesian Structural Damage Identification
,”
Appl. Math. Modell.
,
104
, pp.
243
258
.10.1016/j.apm.2021.11.026
121.
Cotta
,
R. M.
,
Naveira-Cotta
,
C. P.
, and
Knupp
,
D. C.
,
2015
, “
Nonlinear Eigenfunction Expansions for the Solution of Nonlinear Diffusion Problems
,”
Proceedings of the First Thermal and Fluid Engineering Summer Conference, ASTFE Digital Library
, New York, Aug. 9–12, Paper No. TFESC-13652.
122.
Cotta
,
R. M.
,
Lisboa
,
K. M.
,
Pontes
,
P. C.
,
Naveira-Cotta
,
C. P.
,
Quaresma
,
J. N. N.
, and
Macêdo
,
E. N.
,
2019
, “
Hybrid Integral Transforms in Nonlinear Heat and Mass Transfer
,”
Proceedings of the Sixth International Conference on Thermophysical and Mechanical Properties of Advanced Materials (THERMAM)
, Çeşme, İzmir, Turkey, Sept. 22–24, pp.
180
200
.
123.
Lamien
,
B.
, and
Orlande
,
H. R. B.
,
2013
, “
Simultaneous Estimation of Thermal Conductivity and Volumetric Heat Capacity of Viscous Liquids With the Line Heat Source Probe Via Bayesian Inference
,”
High Temp., High Pressures
,
42
(
3
), pp.
151
174
.http://www.oldcitypublishing.com/journals/hthp-home/hthp-issue-contents/hthp-volume-42-number-3-2013/hthp-42-3-p-151-174/
124.
Lamien
,
B.
, and
Orlande
,
H. R. B.
,
2013
, “
Approximation Error Model to Account for Convective Effects in Liquids Characterized by the Line Heat Source Probe
,”
Proceedings of the Fourth Inverse Problems, Design and Optimization Symposium (IPDO-2013)
, Albi, France, June 26–28, pp.
1
10
.
125.
Mahmoudi
,
Y.
, and
Karimi
,
N.
,
2014
, “
Numerical Investigation of Heat Transfer Enhancement in a Pipe Partially Filled With a Porous Material Under Local Thermal Non-Equilibrium Condition
,”
Int. J. Heat Mass Transfer
,
68
, pp.
161
173
.10.1016/j.ijheatmasstransfer.2013.09.020
126.
Poulikakos
,
D.
, and
Kazmierczak
,
M.
,
1987
, “
Forced Convection in a Duct Partially Filled With a Porous Material
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
653
662
.10.1115/1.3248138
127.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2002
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.
128.
Santos
,
S. M. D.
, and
Sphaier
,
L. A.
,
2020
, “
Transient Formulation for Evaluating Convective Coefficients in Regenerative Exchangers With Hygroscopic Channels
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104691
.10.1016/j.icheatmasstransfer.2020.104691
129.
Li
,
F.
,
An
,
C.
,
Duan
,
M.
, and
Su
,
J.
,
2020
, “
Combined Damping Model for Dynamics and Stability of a Pipe Conveying Two-Phase Flow
,”
Ocean Eng.
,
195
, p.
106683
.10.1016/j.oceaneng.2019.106683
130.
He
,
Y.
,
An
,
C.
, and
Su
,
J.
,
2020
, “
Generalized Integral Transform Solution for Free Vibration of Orthotropic Rectangular Plates With Free Edges
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
4
), p.
183
.10.1007/s40430-020-2271-0
You do not currently have access to this content.