Abstract

Silicon nanowire transistors are thought to be ideal transistor devices due to electrostatic control of the gate, and the International Roadmap for Devices and Systems has indicated that arrays of these devices are possible for future transistor devices. Nonequilibrium phonon transport due to self-heating in silicon nanowire transistors affects performance in the areas of carrier mobility, speed, aging, and thermal failure. Existing methods for phonon transport modeling range in fidelity and flexibility. Direct quantum or atomic simulations offer high fidelity with reduced flexibility while Monte Carlo methods offer enhanced flexibility for reduced fidelity. An enhanced statistical phonon transport model (enhanced SPTM) is presented to fill the gap between Monte Carlo and direct atomic methods. Application of the enhanced SPTM to one-dimensional (1D) simulations of silicon nanowire devices illustrates production of design relative information. Simulation results indicated an excess build-up of up to 14% optical phonons beyond equilibrium values giving rise to transient local temperature hot spots of 60 Kelvin in the drain region. The local build-up of excess optical phonons in the drain region has implications on performance and reliability.The enhanced SPTM is a valid engineering design tool for evaluating the thermal performance of silicon nanowire transistor designs. The phonon fidelity of the enhanced SPTM is greater than Monte Carlo and the Boltzmann Transport Equation and the length-scale and time-scale fidelity of the enhanced SPTM is better than direct atomic simulation.

References

1.
Huang
,
W.
,
Allen-Ware
,
M.
,
Carter
,
J. B.
,
Cheng
,
E.
,
Skadron
,
K.
, and
Stan
,
M. R.
,
2011
, “
Temperature-Aware Architecture: Lessons and Opportunities
,”
IEEE Micro
,
31
(
3
), pp.
82
86
.10.1109/MM.2011.60
2.
Iranfar
,
A.
,
Kamal
,
M.
,
Afzali-Kusha
,
A.
,
Pedram
,
M.
, and
Atienza
,
D.
, “
TheSPoT: Thermal Stress-Aware Power and Temperature Management for Multiprocessor Systems-on-Chip
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
37
(
8
), pp.
1532
1545
.10.1109/TCAD.2017.2768417
3.
Danowitz
,
A.
,
Kelley
,
K.
,
Mao
,
J.
,
Stevenson
,
J.
, and
Horowitz
,
M.
,
2012
, “CPU DB: Recording Microprocessor History,”
Commun. ACM
, 55(4), pp.
55
63
.10.1145/2133806.2133822
4.
Rhyner
,
R.
, and
Luisier
,
M.
,
2014
, “
Atomistic Modeling of Coupled Electron-Phonon Transport in Nanowire Transistors
,”
Phys. Rev. B
,
89
(
23
), p.
235311
.10.1103/PhysRevB.89.235311
5.
Rhyner
,
R.
, and
Luisier
,
M.
,
2016
, “
Minimizing Self-Heating and Heat Dissipation in Ultrascaled Nanowire Transistors
,”
Nano Lett.
,
16
(
2
), pp.
1022
1026
.10.1021/acs.nanolett.5b04071
6.
Rhyner
,
R.
, and
Luisier
,
M.
,
2017
, “
Influence of Thermal Losses at the Gate Contact of Si Nanowire Transistors: A Phenomenological Treatment in Quantum Transport Theory
,”
Appl. Phys. Lett.
,
110
(
10
), p.
103508
.10.1063/1.4978516
7.
Peterson
,
R. B.
,
1994
, “
Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
815
822
.10.1115/1.2911452
8.
Mazumder
,
S.
, and
Majumdar
,
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
,
123
(
4
), pp.
749
759
.10.1115/1.1377018
9.
Wong
,
B. T.
,
Francoeur
,
M.
, and
Pinar Mengüç
,
M.
,
2011
, “
A Monte Carlo Simulation for Phonon Transport Within Silicon Structures at Nanoscales With Heat Generation
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1825
1838
.10.1016/j.ijheatmasstransfer.2010.10.039
10.
Wang
,
T.
, and
Murthy
,
J. Y.
,
2006
, “
Solution of the Phonon Boltzmann Transport Equation Employing Rigorous Implementation of Phonon Conservation Rules
,” ASME International Mechanical Engineering Congress and Exposition,
ASME
Paper No. IMECE2006-14090.10.1115/IMECE2006-14090
11.
Mittal
,
A.
, and
Mazumder
,
S.
,
2010
, “
Monte Carlo Study of Phonon Heat Conduction in Silicon Thin Films Including Contributions of Optical Phonons
,”
ASME J. Heat Transfer
,
132
(
5
), p.
52402
.10.1115/1.4000447
12.
Mittal
,
A.
,
2011
, “Prediction of Non-Equilibrium Heat Conduction in Crystalline Materials Using the Boltzmann Transport Equation for Phonons,”
Ph.D. dissertation
, The Ohio State University, Columbus, OH.https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1316471562&disposition=inline
13.
Shao
,
C.
,
Hori
,
T.
, and
Shiomi
,
J.
,
2022
, “
P-Trans: A Monte Carlo Ray-Tracing Software to Simulate Phonon Transport in Arbitrary Nanostructures
,”
Comput. Phys. Commun.
,
276
, p.
108361
.10.1016/j.cpc.2022.108361
14.
Brown
,
T. W.
, III
,
2012
,
A Statistical Phonon Transport Model for Thermal Transport in Crystalline Materials From the Diffuse to Ballistic Regime
,
Doctor of Philosophy Rochester Institute of Technology
,
Rochester, NY
.
15.
Brown
,
T. W.
, and
Hensel
,
E.
,
2012
, “
Statistical Phonon Transport Model for Multiscale Simulation of Thermal Transport in Silicon: Part I—Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7444
7452
.10.1016/j.ijheatmasstransfer.2012.07.041
16.
Brown
,
T. W.
, and
Hensel
,
E.
,
2012
, “
Statistical Phonon Transport Model for Multiscale Simulation of Thermal Transport in Silicon: Part II—Model Verification and Validation
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7453
7459
.10.1016/j.ijheatmasstransfer.2012.07.042
17.
Medlar
,
M. P.
, and
Hensel
,
E. C.
,
2020
, “
Validation of an Enhanced Dispersion Algorithm for Use With the Statistical Phonon Transport Model
,”
ASME
Paper No. HT2020-8926.10.1115/HT2020-8926
18.
Shomali
,
Z.
,
Pedar
,
B.
,
Ghazanfarian
,
J.
, and
Abbassi
,
A.
,
2017
, “
Monte Carlo Parallel Simulation of Phonon Transport for 3D Silicon Nano-Devices
,”
Int. J. Therm. Sci.
,
114
, pp.
139
154
.10.1016/j.ijthermalsci.2016.12.014
19.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
,
2004
, “
Analytic Band Monte Carlo Model for Electron Transport in Si Including Acoustic and Optical Phonon Dispersion
,”
J. Appl. Phys.
,
96
(
9
), pp.
4998
5005
.10.1063/1.1788838
20.
Hao
,
Q.
,
Zhao
,
H.
, and
Xiao
,
Y.
,
2017
, “
A Hybrid Simulation Technique for Electrothermal Studies of Two-Dimensional GaN-on-SiC High Electron Mobility Transistors
,”
J. Appl. Phys.
,
121
(
20
), p.
204501
.10.1063/1.4983761
21.
Sabatti
,
F. F. M.
,
Goodnick
,
S. M.
, and
Saraniti
,
M.
,
2017
, “
Simulation of Phonon Transport in Semiconductors Using a Population-Dependent Many-Body Cellular Monte Carlo Approach
,”
ASME J. Heat Transfer
,
139
(
3
), p.
032002
.10.1115/1.4035042
22.
Kukita
,
K.
, and
Kamakura
,
Y.
,
2013
, “
Monte Carlo Simulation of Phonon Transport in Silicon Including a Realistic Dispersion Relation
,”
J. Appl. Phys.
,
114
(
15
), p.
154312
.10.1063/1.4826367
23.
Wu
,
R.
,
Hu
,
R.
, and
Luo
,
X.
,
2016
, “
First-Principle-Based Full-Dispersion Monte Carlo Simulation of the Anisotropic Phonon Transport in the Wurtzite GaN Thin Film
,”
J. Appl. Phys.
,
119
(
14
), p.
145706
.10.1063/1.4945776
24.
Davier
,
B.
,
Larroque
,
J.
,
Dollfus
,
P.
,
Chaput
,
L.
,
Volz
,
S.
,
Lacroix
,
D.
, and
Saint-Martin
,
J.
,
2018
, “
Heat Transfer in Rough Nanofilms and Nanowires Using Full Band Ab Initio Monte Carlo Simulation
,”
J. Phys.: Condens. Matter
,
30
(
49
), p.
495902
.10.1088/1361-648X/aaea4f
25.
Medlar
,
M. P.
, and
Hensel
,
E. C.
,
2020
, “
Validation of a Physics Based Three Phonon Scattering Algorithm Implemented in the Statistical Phonon Transport Model
,”
ASME
Paper No. IMECE2020-23307.10.1115/IMECE2020-23307
26.
Esfarjani
,
K.
,
Chen
,
G.
, and
Stokes
,
H. T.
,
2011
, “
Heat Transport in Silicon From First-Principles Calculations
,”
Phys. Rev. B
,
84
(
8
), p.
11
.10.1103/PhysRevB.84.085204
27.
Ziman
,
J. M.
,
1960
,
Electrons and Phonons
,
Oxford
,
UK
.
28.
Reissland
,
J. A.
,
1973
,
The Physics of Phonons
,
Wiley
,
London, UK
.
29.
Srivastava
,
G. P.
,
1990
,
The Physics of Phonons
,
Taylor and Francis Group
, New York.
30.
Han
,
Y.
, and
Klemens
,
P. G.
,
1993
, “
Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures
,”
Phys. Rev. B
,
48
(
9
), pp.
6033
6042
.10.1103/PhysRevB.48.6033
31.
Peraud
,
J.-P. M.
, and
Hadjiconstantinou
,
N. G.
,
2012
, “
An Alternative Approach to Efficient Simulation of Micro/Nanoscale Phonon Transport
,”
Appl. Phys. Lett.
,
101
(
15
), p.
153114
.10.1063/1.4757607
32.
Herman
,
F.
,
1959
, “
Lattice Vibrational Spectrum of Germanium
,”
J. Phys. Chem. Solids
,
8
, pp.
405
418
.10.1016/0022-3697(59)90376-2
33.
Ghatak
,
A. K.
, and
Kothari
,
L. S.
,
1972
,
An Introduction to Lattice Dynamics
,
Addison-Wesley
, London, UK
.
34.
Esfarjani
,
K.
, and
Stokes
,
H. T.
,
2008
, “
Method to Extract Anharmonic Force Constants From First Principles Calculations
,”
Phys. Rev. B
,
77
(
14
), p.
144112
.10.1103/PhysRevB.77.144112
35.
Sakurai
,
J. J.
, and
Napolitano
,
J.
,
2011
,
Modern Quantum Mechanics
,
Addison-Wesley
,
Boston, MA
.
36.
Rowlette
,
J. A.
, and
Goodson
,
K. E.
,
2008
, “
Fully Coupled Nonequilibirum Electron-Phonon Transport in Nanometer-Scale Silicon FETs
,”
IEEE Trans. Electron Devices
,
55
(
1
), pp.
220
232
.10.1109/TED.2007.911043
37.
Larrieu
,
G.
, and
Han
,
X. L.
,
2013
, “
Vertical Nanowire Array-Based Field Effect Transistors for Ultimate Scaling
,”
Nanoscale
,
5
(
6
), pp.
2437
2441
.10.1039/c3nr33738c
38.
IEEE
,
2017
,
International Roadmap for Devices and Systems Executive Summary
,
IEEE
, Piscataway, NJ.
39.
Medlar
,
M. P.
,
2021
, “
An Enhanced Statistical Phonon Transport Model for Nanoscale Thermal Transport and Design
,”
Ph.D. thesis
,
Rochester Institute of Technology
, Rochester, NY.https://scholarworks.rit.edu/theses/10860
40.
Pop
,
E.
,
2014
, “
Monte Carlo Transport and Heat Generation in Semiconductors
,”
Annu. Rev. Heat Transfer
,
17
, pp.
385
423
.10.1615/AnnualRevHeatTransfer.2014007694
41.
Pop
,
E.
,
Sinha
,
S.
, and
Goodson
,
K. E.
,
2006
, “
Heat Generation and Transport in Nanometer-Scale Transistors
,”
Proc. IEEE
,
94
(
8
), pp.
1587
1601
.10.1109/JPROC.2006.879794
42.
Liao
,
B.
,
Qiu
,
B.
,
Zhou
,
J.
,
Huberman
,
S.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2015
, “
Significant Reduction of Lattice Thermal Conductivity by the Electron-Phonon Interaction in Silicon With High Carrier Concentrations: A First-Principles Study
,”
Phys. Rev. Lett.
,
114
(
11
), p.
115901
.10.1103/PhysRevLett.114.115901
43.
Sinha
,
S.
,
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
,
2006
, “
Non-Equilibrium Phonon Distributions in Sub-100 nm Silicon Transistors
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
638
647
.10.1115/1.2194041
44.
Luisier
,
M.
,
2014
, “
Atomistic Simulation of Transport Phenomena in Nanoelectronic Devices
,”
Chem. Soc. Rev.
,
43
(
13
), pp.
4357
4367
.10.1039/C4CS00084F
You do not currently have access to this content.