Abstract

The phonon Boltzmann transport equation (BTE) is an important tool for studying the nanoscale thermal transport. Because phonons have a large spread in their properties, the nongray (i.e., considering different phonon bands) phonon BTE is needed to accurately capture the nanoscale transport phenomena. However, BTE solvers generally require large computational cost. Nongray modeling imposes significant additional complexity on the numerical simulations, which hinders the large-scale modeling of real nanoscale systems. In this work, we address this issue by a systematic investigation on the phonon band discretization scheme using real material properties of four representative materials, including silicon, gallium arsenide, diamond, and lead telluride. We find that the schemes used in previous studies require at least a few tens of bands to ensure the accuracy, which requires large computational costs. We then propose an improved band discretization scheme, in which we divide the mean free path domain into two subdomains, one on either side of the inflection point of the mean free path accumulated thermal conductivity, and adopt the Gauss–Legendre quadrature for each subdomain. With this scheme, the solution of the phonon BTE converges (error < 1%) with less than ten phonon bands for all these materials. The proposed scheme allows significantly reducing the time and memory consumption of the numerical BTE solver, which is an important step toward large-scale phonon BTE simulations for real materials.

References

1.
Lundstrom
,
M. S.
, and
Guo
,
J.
,
2006
,
Nanoscale Transistors: Device Physics, Modeling and Simulation
,
Springer US
,
New York
.
2.
Warzoha
,
R. J.
,
Wilson
,
A. A.
,
Donovan
,
B. F.
,
Donmezer
,
N.
,
Giri
,
A.
,
Hopkins
,
P. E.
,
Choi
,
S.
,
Pahinkar
,
D.
,
Shi
,
J.
,
Graham
,
S.
,
Tian
,
Z.
, and
Ruppalt
,
L.
,
2021
, “
Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging
,”
ASME J. Electron Packag.
,
143
(
2
), p.
020804
.10.1115/1.4049293
3.
Bao
,
H.
,
Chen
,
J.
,
Gu
,
X.
, and
Cao
,
B.
,
2018
, “
A Review of Simulation Methods in Micro/Nanoscale Heat Conduction
,”
ES Energy Environ.
,
1
, pp.
16
55
.10.30919/esee8c149
4.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
New York
.
5.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S.
,
Goodson
,
K. E.
,
Keblinski
,
P.
,
King
,
W. P.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Phillpot
,
S. R.
,
Pop
,
E.
, and
Shi
,
L.
,
2014
, “
Nanoscale Thermal Transport. II. 2003-2012
,”
Appl. Phys. Rev.
,
1
(
1
), p.
011305
.10.1063/1.4832615
6.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
1
), pp.
7
16
.10.1115/1.2910673
7.
Lundstrom
,
M.
,
2002
,
Fundamentals of Carrier Transport
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
8.
Williams
,
M. M. R.
,
1985
, “
Computational Methods of Neutron Transport
,”
Ann. Nucl. Energy
,
12
(
2
), p.
101
.10.1016/0306-4549(85)90125-2
9.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Elsevier
,
Amsterdam, The Netherlands
.
10.
Qian
,
Y. H.
,
D'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice Bgk Models for Navier-Stokes Equation
,”
Europhys. Lett.
,
17
(
6
), pp.
479
484
.10.1209/0295-5075/17/6/001
11.
Lux
,
I.
, and
Koblinger
,
L.
,
1991
,
Monte Carlo Particle Transport Methods: Neutron and Photon Calculations
,
CRC Press
,
Boca Raton, FL
.
12.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.10.1146/annurev.fluid.30.1.329
13.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
,
2003
, “
An Improved Computational Procedure for Sub-Micron Heat Conduction
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
5
), pp.
904
910
.10.1115/1.1603775
14.
Klitsner
,
T.
,
Vancleve
,
J. E.
,
Fischer
,
H. E.
, and
Pohl
,
R. O.
,
1988
, “
Phonon Radiative Heat Transfer and Surface Scattering
,”
Phys. Rev. B
,
38
(
11
), pp.
7576
7594
.10.1103/PhysRevB.38.7576
15.
Guo
,
Y.
, and
Wang
,
M.
,
2016
, “
Lattice Boltzmann Modeling of Phonon Transport
,”
J. Comput. Phys.
,
315
, pp.
1
15
.10.1016/j.jcp.2016.03.041
16.
Christensen
,
A.
, and
Graham
,
S.
,
2010
, “
Multiscale Lattice Boltzmann Modeling of Phonon Transport in Crystalline Semiconductor Materials
,”
Numer. Heat Transfer, Part B Fundam.
,
57
(
2
), pp.
89
109
.10.1080/10407790903582942
17.
Chattopadhyay
,
A.
, and
Pattamatta
,
A.
,
2014
, “
A Comparative Study of Submicron Phonon Transport Using the Boltzmann Transport Equation and the Lattice Boltzmann Method
,”
Numer. Heat Transfer, Part B Fundam.
,
66
(
4
), pp.
360
379
.10.1080/10407790.2014.915683
18.
Hamian
,
S.
,
Yamada
,
T.
,
Faghri
,
M.
, and
Park
,
K.
,
2015
, “
Finite Element Analysis of Transient Ballistic-Diffusive Phonon Heat Transport in Two-Dimensional Domains
,”
Int. J. Heat Mass Transfer
,
80
, pp.
781
788
.10.1016/j.ijheatmasstransfer.2014.09.073
19.
Tang
,
G. H.
,
Bi
,
C.
, and
Fu
,
B.
,
2013
, “
Thermal Conduction in Nano-Porous Silicon Thin Film
,”
J. Appl. Phys.
,
114
(
18
), p.
184302
.10.1063/1.4829913
20.
Yang
,
F.
, and
Dames
,
C.
,
2013
, “
Mean Free Path Spectra as a Tool to Understand Thermal Conductivity in Bulk and Nanostructures
,”
Phys. Rev. B
,
87
(
3
), p.
035437
.10.1103/PhysRevB.87.035437
21.
Gu
,
X.
,
Fan
,
Z.
,
Bao
,
H.
, and
Zhao
,
C. Y.
,
2019
, “
Revisiting Phonon-Phonon Scattering in Single-Layer Graphene
,”
Phys. Rev. B
,
100
(
6
), p.
064306
.10.1103/PhysRevB.100.064306
22.
Esfarjani
,
K.
,
Chen
,
G.
, and
Stokes
,
H. T.
,
2011
, “
Heat Transport in Silicon From First-Principles Calculations
,”
Phys. Rev. B
,
84
(
8
), p.
085204
.10.1103/PhysRevB.84.085204
23.
Hu
,
Y.
,
Li
,
S.
, and
Bao
,
H.
,
2021
, “
First-Principles Based Analysis of Thermal Transport in Metallic Nanostructures: Size Effect and Wiedemann-Franz Law
,”
Phys. Rev. B
,
103
(
10
), p.
104301
.10.1103/PhysRevB.103.104301
24.
Ziman
,
J. M.
,
2001
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
,
Oxford University Press
,
New York
.
25.
Li
,
H. L.
,
Shiomi
,
J.
, and
Cao
,
B. Y.
,
2020
, “
Ballistic-Diffusive Heat Conduction in Thin Films by Phonon Monte Carlo Method: Gray Medium Approximation Versus Phonon Dispersion
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
11
), p.
112502
.10.1115/1.4048093
26.
Ali
,
S. A.
,
Kollu
,
G.
,
Mazumder
,
S.
,
Sadayappan
,
P.
, and
Mittal
,
A.
,
2014
, “
Large-Scale Parallel Computation of the Phonon Boltzmann Transport Equation
,”
Int. J. Therm. Sci.
,
86
, pp.
341
351
.10.1016/j.ijthermalsci.2014.07.019
27.
Loy
,
J. M.
,
Murthy
,
J. Y.
, and
Singh
,
D.
,
2013
, “
A Fast Hybrid Fourier-Boltzmann Transport Equation Solver for Nongray Phonon Transport
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
1
), p.
011008
.10.1115/1.4007654
28.
Zhang
,
C.
,
Chen
,
S.
,
Guo
,
Z.
, and
Wu
,
L.
,
2021
, “
A Fast Synthetic Iterative Scheme for the Stationary Phonon Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
,
174
, p.
121308
.10.1016/j.ijheatmasstransfer.2021.121308
29.
Hao
,
Q.
,
Chen
,
G.
, and
Jeng
,
M. S.
,
2009
, “
Frequency-Dependent Monte Carlo Simulations of Phonon Transport in Two-Dimensional Porous Silicon With Aligned Pores
,”
J. Appl. Phys.
,
106
(
11
), p.
114321
.10.1063/1.3266169
30.
Hua
,
Y.
, and
Cao
,
B.
,
2014
, “
Phonon Ballistic-Diffusive Heat Conduction in Silicon Nanofilms by Monte Carlo Simulations
,”
Int. J. Heat Mass Transfer
,
78
, pp.
755
759
.10.1016/j.ijheatmasstransfer.2014.07.037
31.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
,
2005
, “
Monte Carlo Simulation of Joule Heating in Bulk and Strained Silicon
,”
Appl. Phys. Lett.
,
86
(
8
), p.
082101
.10.1063/1.1870106
32.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2004
, “
Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
6
), pp.
946
955
.10.1115/1.1833367
33.
Péraud
,
J. P. M.
, and
Hadjiconstantinou
,
N. G.
,
2011
, “
Efficient Simulation of Multidimensional Phonon Transport Using Energy-Based Variance-Reduced Monte Carlo Formulations
,”
Phys. Rev. B
,
84
(
20
), p.
205331
.10.1103/PhysRevB.84.205331
34.
Mittal
,
A.
, and
Mazumder
,
S.
,
2010
, “
Monte Carlo Study of Phonon Heat Conduction in Silicon Thin Films Including Contributions of Optical Phonons
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
5
), p.
052402
.10.1115/1.4000447
35.
Ran
,
X.
, and
Wang
,
M.
,
2019
, “
Efficiency Improvement of Discrete-Ordinates Method for Interfacial Phonon Transport by Gauss-Legendre Integral for Frequency Domain
,”
J. Comput. Phys.
,
399
, p.
108920
.10.1016/j.jcp.2019.108920
36.
Hao
,
Q.
,
Zhao
,
H.
,
Xiao
,
Y.
, and
Kronenfeld
,
M. B.
,
2018
, “
Electrothermal Studies of GaN-Based High Electron Mobility Transistors With Improved Thermal Designs
,”
Int. J. Heat Mass Transfer
,
116
, pp.
496
506
.10.1016/j.ijheatmasstransfer.2017.09.048
37.
Li
,
W.
,
Carrete
,
J.
,
Katcho
,
N. A.
, and
Mingo
,
N.
,
2014
, “
ShengBTE: A Solver of the Boltzmann Transport Equation for Phonons
,”
Comput. Phys. Commun.
,
185
(
6
), pp.
1747
1758
.10.1016/j.cpc.2014.02.015
38.
Li
,
S.
,
Tong
,
Z.
,
Zhang
,
X.
, and
Bao
,
H.
,
2020
, “
Thermal Conductivity and Lorenz Ratio of Metals at Intermediate Temperatures With Mode-Level First-Principles Analysis
,”
Phys. Rev. B
,
102
(
17
), p.
174306
.10.1103/PhysRevB.102.174306
39.
Tong
,
Z.
,
Li
,
S.
,
Ruan
,
X.
, and
Bao
,
H.
,
2019
, “
Comprehensive First-Principles Analysis of Phonon Thermal Conductivity and Electron-Phonon Coupling in Different Metals
,”
Phys. Rev. B
,
100
(
14
), p.
144306
.10.1103/PhysRevB.100.144306
40.
Minnich
,
A. J.
,
2012
, “
Determining Phonon Mean Free Paths From Observations of Quasiballistic Thermal Transport
,”
Phys. Rev. Lett.
,
109
(
20
), p.
205901
.10.1103/PhysRevLett.109.205901
41.
Minnich
,
A. J.
,
Johnson
,
J. A.
,
Schmidt
,
A. J.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
,”
Phys. Rev. Lett.
,
107
(
9
), p.
095901
.10.1103/PhysRevLett.107.095901
42.
Kittel
,
C.
,
1976
,
Introduction to Solid State Physics
,
Wiley
,
New York
.
43.
Hu
,
Y.
,
Feng
,
T.
,
Gu
,
X.
,
Fan
,
Z.
,
Wang
,
X.
,
Lundstrom
,
M.
,
Shrestha
,
S. S.
, and
Bao
,
H.
,
2020
, “
Unification of Nonequilibrium Molecular Dynamics and the Mode-Resolved Phonon Boltzmann Equation for Thermal Transport Simulations
,”
Phys. Rev. B
,
101
(
15
), p.
155308
.10.1103/PhysRevB.101.155308
44.
Romano
,
G.
, and
Grossman
,
J. C.
,
2015
, “
Heat Conduction in Nanostructured Materials Predicted by Phonon Bulk Mean Free Path Distribution
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
7
), p.
071302
.10.1115/1.4029775
45.
Luo
,
T.
, and
Chen
,
G.
,
2013
, “
Nanoscale Heat Transfer-From Computation to Experiment
,”
Phys. Chem. Chem. Phys.
,
15
(
10
), pp.
3389
3412
.10.1039/c2cp43771f
46.
Luo
,
X. P.
, and
Yi
,
H. L.
,
2017
, “
A Discrete Unified Gas Kinetic Scheme for Phonon Boltzmann Transport Equation Accounting for Phonon Dispersion and Polarization
,”
Int. J. Heat Mass Transfer
,
114
, pp.
970
980
.10.1016/j.ijheatmasstransfer.2017.06.127
47.
Li
,
R.
,
Lee
,
E.
, and
Luo
,
T.
,
2021
, “
Physics-Informed Neural Networks for Solving Multiscale Mode- Resolved Phonon Boltzmann Transport Equation
,”
Mater. Today Phys.
,
19
, p.
100429
.10.1016/j.mtphys.2021.100429
48.
Eberly
,
W.
,
Giesbrecht
,
M.
,
Giorgi
,
P.
,
Storjohann
,
A.
, and
Villard
,
G.
,
2006
, “
Solving Sparse Rational Linear Systems
,” Proceedings of the International Symposium on Symbolic and Algebraic Computation (
ISSAC
), Genoa, Italy, July 9–12, pp.
63
70
.https://www.lirmm.fr/~giorgi/issac06.pdf
49.
Romano
,
G.
,
Kolpak
,
A. M.
,
Carrete
,
J.
, and
Broido
,
D.
,
2019
, “
Parameter-Free Model to Estimate Thermal Conductivity in Nanostructured Materials
,”
Phys. Rev. B
,
100
(
4
), p.
45310
.10.1103/PhysRevB.100.045310
50.
Kaiser
,
J.
,
Feng
,
T.
,
Maassen
,
J.
,
Wang
,
X.
,
Ruan
,
X.
, and
Lundstrom
,
M.
,
2017
, “
Thermal Transport at the Nanoscale: A Fourier's Law Vs. Phonon Boltzmann Equation Study
,”
J. Appl. Phys.
,
121
(
4
), p.
044302
.10.1063/1.4974872
51.
Zhang
,
C.
, and
Guo
,
Z.
,
2019
, “
Discrete Unified Gas Kinetic Scheme for Multiscale Heat Transfer With Arbitrary Temperature Difference
,”
Int. J. Heat Mass Transfer
,
134
, pp.
1127
1136
.10.1016/j.ijheatmasstransfer.2019.02.056
52.
Luo
,
T.
,
Garg
,
J.
,
Shiomi
,
J.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2013
, “
Gallium Arsenide Thermal Conductivity and Optical Phonon Relaxation Times From First-Principles Calculations
,”
EPL
,
101
(
1
), p.
16001
.10.1209/0295-5075/101/16001
53.
Li
,
W.
,
Mingo
,
N.
,
Lindsay
,
L.
,
Broido
,
D. A.
,
Stewart
,
D. A.
, and
Katcho
,
N. A.
,
2012
, “
Thermal Conductivity of Diamond Nanowires From First Principles
,”
Phys. Rev. B
,
85
(
19
), p.
195436
.10.1103/PhysRevB.85.195436
54.
Aketo
,
D.
,
Shiga
,
T.
, and
Shiomi
,
J.
,
2014
, “
Scaling Laws of Cumulative Thermal Conductivity for Short and Long Phonon Mean Free Paths
,”
Appl. Phys. Lett.
,
105
(
13
), p.
131901
.10.1063/1.4896844
55.
Abhyankar
,
S.
,
Brown
,
J.
,
Constantinescu
,
E. M.
,
Ghosh
,
D.
,
Smith
,
B. F.
, and
Zhang
,
H.
,
2018
, “
PETSc/TS: A Modern Scalable ODE/DAE Solver Library
,” arXiv:1806.01437.
56.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films With Thickness of Order 100 Nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3005
3007
.10.1063/1.123994
57.
Asheghi
,
M.
,
Leung
,
Y. K.
,
Wong
,
S. S.
, and
Goodson
,
K. E.
,
1997
, “
Phonon-Boundary Scattering in Thin Silicon Layers
,”
Appl. Phys. Lett.
,
71
(
13
), pp.
1798
1800
.10.1063/1.119402
58.
Ravichandran
,
N. K.
,
Zhang
,
H.
, and
Minnich
,
A. J.
,
2018
, “
Spectrally Resolved Specular Reflections of Thermal Phonons From Atomically Rough Surfaces
,”
Phys. Rev. X
,
8
(
4
), p.
41004
.10.1103/PhysRevX.8.041004
You do not currently have access to this content.