Abstract

The diffusion equation with a jump change in diffusion coefficient depending on the diffusant concentration is considered. The phase transition problem with moving boundary to describe the features of activated recrystallization is formulated. An analytical description of the motion of the activated recrystallization front in the presence of a thin coating, which causes changes in the microstructure and physical properties of polycrystalline metals, is derived. The nonlinear equation, the solution of which describes the motion of activated recrystallization front, is found. It is shown that the dependence of the depth of the recrystallized layer is determined by such structural factors as the average size of recrystallized grains, the fraction of stationary grain boundaries, and jump in the average concentration of impurities in the zone of the front of activated recrystallization. The physical interpretation of coefficient of the Stefan condition at the moving boundary is given.

References

1.
Mehrer
,
H.
,
2007
,
Diffusion in Solids. Fundamentals, Methods, Materials, Diffusion-Controlled Processes
,
Springer-Verlag
,
Berlin, Heidelberg
.
2.
Kolobov
,
Y. R.
,
Valiev
,
R. Z.
,
Grabovetskaya
,
G. P.
,
Zhilyaev
,
A. P.
,
Dudaev
,
E. F.
,
Ivanov
,
K. V.
,
Kashin
,
O. A.
, and
Naidenkin
,
E. V.
,
2007
,
Grain Boundary Diffusion and Properties of Nanostructured Materials
,
Cambridge International Science Publishing
,
Cambridge, UK
.
3.
Kolobov
,
Y.
,
Grabovetskaya
,
G. P.
,
Ivanov
,
M. B.
,
Zhilyaev
,
A. P.
, and
Valiev
,
R. Z.
,
2001
, “
Grain Boundary Diffusion Characteristics of Nanostructured Nickel
,”
Scrip. Mater.
,
44
(
6
), pp.
873
878
.10.1016/S1359-6462(00)00699-0
4.
Kolobov
,
Y. R.
,
Grabovetskaya
,
G. P.
,
Ivanov
,
K. V.
, and
Ivanov
,
M. B.
,
2002
, “
Grain Boundary Diffusion and Mechanisms of Creep of Nanostructured Metals
,”
Int. Sci.
,
10
, pp.
31
36
.10.1023/A:1015128928158
5.
Grabovetskaya
,
G. P.
,
Mishin
,
I. P.
,
Ratochka
,
I. V.
,
Psakhie
,
S. G.
, and
Kolobov
,
Y.
,
2008
, “
Grain Boundary Diffusion of Nickel in Submicrocrystalline Molybdenum Processed by Severe Plastic Deformation
,”
Tech. Phys. Lett.
,
34
(
2
), pp.
136
138
.10.1134/S1063785008020156
6.
Herth
,
S.
,
Michel
,
T.
,
Tanimoto
,
H.
,
Eggersmann
,
M.
,
Dittmar
,
R.
,
Schaefer
,
H. E.
,
Frank
,
W.
, and
Würschum
,
R.
,
2001
, “
Self-Diffusion in Nanocrystalline Fe and Fe-Rich Alloys
,”
Defect Diffus. Forum
,
194–199
, pp.
1199
1204
.10.4028/www.scientific.net/DDF.194-199.1199
7.
Apyhtina
,
I.
,
Kovaleva
,
K.
,
Novikov
,
A.
,
Orelkina
,
D.
,
Petelin
,
A.
, and
Yakushko
,
E.
,
2015
, “
Diffusion Controlled Grain Boundary and Triple Junction Wetting in Polycrystalline Solid Metal
,”
Defect Diffus. Forum
,
363
, pp.
127
129
.10.4028/www.scientific.net/DDF.363.127
8.
Galvin
,
C. O. T.
,
Cooper
,
M. W. D.
,
Fossati1
,
P. C. M.
,
Stanek
,
C. R.
,
Grimes
,
R. W.
, and
Andersson
,
D. A.
,
2016
, “
Pipe and Grain Boundary Diffusion of He in UO2
,”
J. Phys. Condens. Matt.
,
28
, p.
405002
.10.1088/0953-8984/28/40/405002
9.
Gupta
,
A.
,
Kulitcki
,
V.
,
Kavakbasi
,
B. T.
,
Buranova
,
Y.
,
Neugebauer
,
J.
,
Wilde
,
G.
,
Hickel
,
T.
, and
Divinski
,
S. V.
,
2018
, “
Precipitate-Induced Nonlinearities of Diffusion Along Grain Boundaries in Al-Based Alloy
,”
Phys. Rev. Mater.
,
2
, p.
073801
.10.1103/PhysRevMaterials.2.073801
10.
Fisher
,
J. C.
,
1951
, “
Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion
,”
J. App. Phys.
,
22
(
1
), pp.
74
77
.10.1063/1.1699825
11.
Smoluchowski
,
R.
,
1952
, “
Theory of Grain Boundary Diffusion
,”
Phys. Rev.
,
87
(
3
), pp.
482
487
.10.1103/PhysRev.87.482
12.
Whipple
,
R. T. P.
,
1954
, “
Concentration Contours in Grain Boundary Diffusion
,”
Philos. Mag.
,
45
(
371
), pp.
1225
1236
.10.1080/14786441208561131
13.
Suzuoka
,
T.
,
1961
, “
Lattice and Grain Boundary Diffusion in Polycrystals
,”
Trans. Jap. Inst. Met.
,
2
(
1
), pp.
25
32
.10.2320/matertrans1960.2.25
14.
Harrison
,
L. G.
,
1961
, “
Influence of Dislocations on Kinetics in Solids With Particular Reference to the Alkali Halides
,”
Trans. Faraday Soc.
,
57
, pp.
1191
1199
.10.1039/tf9615701191
15.
Le Claire
,
A. D.
, and
Rabinovitch
,
A.
,
1981
, “
A Mathematical Analysis of Diffusion in Dislocations. I. Application to Concentration 'Tails
,”
J. Phys. C Solid State Phys.
,
14
(
27
), pp.
3863
3879
.10.1088/0022-3719/14/27/011
16.
Kaur
,
I.
,
Mishin
,
Y.
, and
Gust
,
W.
,
1995
,
Fundamentals of Grain and Interphase Boundary Diffusion
,
Wiley
,
Chichester, UK
.
17.
Krasil'nikov
,
V. V.
, and
Savotchenko
,
S. E.
,
2009
, “
Grain Boundary Diffusion Patterns Under Nonequilibrium and Migration of Grain Boundaries in Nanoctructure Materials
,”
Bull. Russ. Acad. Sci. Phys.
,
73
(
9
), pp.
1277
1283
.10.3103/S1062873809090214
18.
Savotchenko
,
S. E.
, and
Cherniakov
,
A. N.
,
2022
, “
Diffusion From a Constant Source Along Nonequilibrium Dislocation Pipes
,”
Int. J. Heat Mass Transfer
,
188
, p.
122655
.10.1016/j.ijheatmasstransfer.2022.122655
19.
Kesarev
,
A. G.
,
Kondrat'ev
,
V. V.
, and
Lomaev
,
I. L.
,
2011
, “
On the Theory of Grain-Boundary Diffusion in Nanostructured Materials Under Conditions of Saturation of the Subboundary Region by the Diffusant
,”
Phys. Met. Metallogr.
,
112
(
1
), pp.
44
52
.10.1134/S0031918X11010285
20.
Kesarev
,
A. G.
,
Kondrat'ev
,
V. V.
, and
Lomaev
,
I. L.
,
2015
, “
Description of Grain-Boundary Diffusion in Nanostructured Materials for Thin-Film Diffusion Source
,”
Phys. Met. Metallogr.
,
116
(
3
), pp.
225
234
.10.1134/S0031918X15030072
21.
Savotchenko
,
S. E.
,
Ivanov
,
M. B.
, and
Yurova
,
O. V.
,
2007
, “
Single-Phase Model of Recrystallization of Molybdenum Activated by Diffusion of Nickel Impurities
,”
Russ. Phys. J.
,
50
(
11
), pp.
1118
1123
.10.1007/s11182-007-0164-7
22.
Savotchenko
,
S. E.
,
2021
, “
The Nonlinear Wave and Diffusion Processes in Media With a Jump Change in Characteristics Depending on the Amplitude of the Field Distribution
,”
Commun. Non. Sci. Num. Simul.
,
99
, p.
105785
.10.1016/j.cnsns.2021.105785
23.
Savotchenko
,
S. E.
,
2021
, “
Models of Activated Recrystallization on Isolated Grain Boundaries in Polycrystals
,”
Mod. Phys. Lett. B
,
35
, p.
2150536
.10.1142/s0217984921505369
24.
Meirmanov
,
A. M.
,
1992
,
The Stefan Problem
,
Walter de Gruyter
,
Berlin, Germany
.
25.
Alexiades
,
V.
, and
Solomon
,
A. D.
,
1993
,
Mathematical Modelling of Melting and Freezing Processes
,
Hemisphere-Taylor & Francis
,
Washington, DC
.
26.
Natale
,
M.
, and
Tarzia
,
D.
,
2003
, “
Explicit Solutions to the One-Phase Stefan Problem With Temperature-Dependent Thermal Conductivity and a Convective Term
,”
Int. J. Eng. Sci.
,
41
(
15
), pp.
1685
1689
.10.1016/S0020-7225(03)00067-3
27.
Tarzia
,
D.
,
2007
, “
Exact Solution for a Stefan Problem With Convective Boundary Condition and Density Jump
,”
PAMM Proc. Appl. Math. Mech.
,
7
(
1
), pp.
1040307
1040308
.10.1002/pamm.200700815
28.
Kartashov
,
E. M.
, and
Krotov
,
G. S.
,
2009
, “
Analytical Solution of the Single-Phase Stefan Problem
,”
Math. Models Comput. Simul.
,
1
(
2
), pp.
180
188
.10.1134/S2070048209020021
29.
Briozzo
,
A. C.
, and
Natale
,
M. F.
,
2020
, “
On a Two-Phase Stefan Problem With Convective Boundary Condition Including a Density Jump at the Free Boundary
,”
Math. Meth. Appl. Sci.
,
43
(
6
), pp.
3744
3753
.10.1002/mma.6152
30.
Rodin
,
A. O.
, and
Khairullin
,
A.
,
2015
, “
Ni Grain Boundary Diffusion in Cu-Co Alloys
,”
Defect Diffus. Forum
,
363
, pp.
130
132
.10.4028/www.scientific.net/DDF.363.130
31.
Prokoshkina
,
D.
,
Esin
,
V.
,
Wilde
,
G.
, and
Divinski
,
S. V.
,
2013
, “
Grain Boundary Width, Energy and Self-Diffusion in Nickel: Effect of Material Purity
,”
Acta Mat.
,
61
(
14
), pp.
5188
5197
.10.1016/j.actamat.2013.05.010
32.
Klinger
,
L.
, and
Rabkin
,
E.
,
1999
, “
Beyond the Fisher Model of Grain Boundary Diffusion: Effect of Structural Inhomogeneity in the Bulk
,”
Acta Mat.
,
47
(
3
), pp.
725
734
.10.1016/S1359-6454(98)00420-0
33.
Divinski
,
S. V.
,
Hisker
,
F.
,
Kang
,
Y.-S.
,
Lee
,
J.-S.
, and
Herzig
,
C.
,
2002
, “
Fe-59 Grain Boundary Diffusion in Nanostructured Gamma-Fe-Ni - Part I: Radiotracer Experiments and Monte Carlo Simulation in the Type-A and B Kinetic Regimes
,”
Z. Metall.
,
93
(
4
), pp.
256
264
.10.3139/146.020256
34.
Anento
,
N.
,
Serra
,
A.
, and
Osetsky
,
Y.
,
2017
, “
Effect of Nickel on Point Defects Diffusion in Fe-Ni Alloys
,”
Acta Mat.
,
132
, pp.
367
373
.10.1016/j.actamat.2017.05.010
35.
Ukpai
,
G.
, and
Rubinsky
,
B.
,
2020
, “
A Mathematical Analysis of Directional Solidification of Aqueous Solutions
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
2
), p.
022401
.10.1115/1.4045312
36.
Kudenatti
,
R. B.
, and
Gogate
,
S. P.
,
2020
, “
Two-Phase Microscopic Heat Transfer Model for Three-Dimensional Stagnation Boundary-Layer Flow in a Porous Medium
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
2
), p.
022701
.10.1115/1.4045412
You do not currently have access to this content.