Abstract

Heat exchangers play a critical role in supercritical CO2 Brayton cycles by providing necessary waste heat recovery. Supercritical CO2 thermal cycles potentially achieve higher energy density and thermal efficiency operating at elevated temperatures and pressures. Accurate and computationally efficient estimation of heat exchanger performance metrics at these conditions is important for the design and optimization of sCO2 systems and thermal cycles. In this paper (Part II), a computationally efficient and accurate numerical model is developed to predict the performance of shell-and-tube heat exchangers (STHXs). Highly accurate correlations reported in Part I of this study are utilized to improve the accuracy of performance predictions, and the concept of volume averaging is used to abstract the geometry and reduce computation time. The numerical model is validated by comparison with computational fluid dynamics (CFD) simulations and provides high accuracy and significantly lower computation time compared to existing numerical models. A preliminary optimization study is conducted and the advantage of using supercritical CO2 as a working fluid for energy systems is demonstrated.

References

1.
Kwon
,
J. S.
,
Son
,
S.
,
Heo
,
J. Y.
, and
Lee
,
J. I.
,
2020
, “
Compact Heat Exchangers for Supercritical CO2 Power Cycle Application
,”
Energy Convers. Manage.
,
209
, p.
112666
.10.1016/j.enconman.2020.112666
2.
Hinze
,
J. F.
,
Nellis
,
G. F.
, and
Anderson
,
M. H.
,
2017
, “
Cost Comparison of Printed Circuit Heat Exchanger to Low Cost Periodic Flow Regenerator for Use as Recuperator in a S-CO2 Brayton Cycle
,”
Appl. Energy
,
208
, pp.
1150
1161
.10.1016/j.apenergy.2017.09.037
3.
Dyreby
,
J.
,
Klein
,
S.
,
Nellis
,
G.
, and
Reindl
,
D.
,
2014
, “
Design Considerations for Supercritical Carbon Dioxide Brayton Cycles With Recompression
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p. 101701.10.1115/1.4027936
4.
Reyes-Belmonte
,
M. A.
,
Sebastián
,
A.
,
Romero
,
M.
, and
González-Aguilar
,
J.
,
2016
, “
Optimization of a Recompression Supercritical Carbon Dioxide Cycle for an Innovative Central Receiver Solar Power Plant
,”
Energy
,
112
, pp.
17
27
.10.1016/j.energy.2016.06.013
5.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.10.1016/j.net.2015.06.009
6.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p. 111703.10.1115/1.4007199
7.
Mecheri
,
M.
, and
Le Moullec
,
Y.
,
2016
, “
Supercritical CO2 Brayton Cycles for Coal-Fired Power Plants
,”
Energy
,
103
, pp.
758
771
.10.1016/j.energy.2016.02.111
8.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p. 041007.10.1115/1.4024030
9.
Miao
,
H.
,
Wang
,
Z.
, and
Niu
,
Y.
,
2020
, “
Performance Analysis of Cooling System Based on Improved Supercritical CO2 Brayton Cycle for Scramjet
,”
Appl. Therm. Eng.
,
167
, p.
114774
.10.1016/j.applthermaleng.2019.114774
10.
Syblik
,
J.
,
Vesely
,
L.
,
Entler
,
S.
,
Stepanek
,
J.
, and
Dostal
,
V.
,
2019
, “
Analysis of Supercritical CO2 Brayton Power Cycles in Nuclear and Fusion Energy
,”
Fusion Eng. Des.
,
146
, pp.
1520
1523
.10.1016/j.fusengdes.2019.02.119
11.
Alsagri
,
A. S.
,
Chiasson
,
A.
, and
Gadalla
,
M.
,
2019
, “
Viability Assessment of a Concentrated Solar Power Tower With a Supercritical CO2 Brayton Cycle Power Plant
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p. 051006.10.1115/1.4043515
12.
Kruizenga
,
A.
,
Li
,
H.
,
Anderson
,
M.
, and
Corradini
,
M.
,
2012
, “
Supercritical Carbon Dioxide Heat Transfer in Horizontal Semicircular Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
8
), p. 081802.10.1115/1.4006108
13.
Guo
,
J.
, and
Huai
,
X.
,
2017
, “
Performance Analysis of Printed Circuit Heat Exchanger for Supercritical Carbon Dioxide
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
6
), p. 061801.10.1115/1.4035603
14.
Clementoni
,
E. M.
,
Cox
,
T. L.
, and
King
,
M. A.
,
2017
, “
Response of a Compact Recuperator to Thermal Transients in a Supercritical Carbon Dioxide Brayton Cycle
,”
ASME
Paper No. GT2017-63058.10.1115/GT2017-63058
15.
Deng
,
T.
,
Li
,
X.
,
Wang
,
Q.
, and
Ma
,
T.
,
2019
, “
Dynamic Modelling and Transient Characteristics of Supercritical CO2 Recompression Brayton Cycle
,”
Energy
,
180
, pp.
292
302
.10.1016/j.energy.2019.05.074
16.
Yang
,
C. Y.
, and
Liao
,
K. C.
,
2017
, “
Effect of Experimental Method on the Heat Transfer Performance of Supercritical Carbon Dioxide in Microchannel
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
11
), p. 112404.10.1115/1.4036694
17.
Liao
,
S. M.
, and
Zhao
,
T. S.
,
2002
, “
Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
3
), pp.
413
420
.10.1115/1.1423906
18.
Selbaş
,
R.
,
Kizilkan
,
Ö.
, and
Reppich
,
M.
,
2006
, “
A New Design Approach for Shell-and-Tube Heat Exchangers Using Genetic Algorithms From Economic Point of View
,”
Chem. Eng. Process. Process Intensif.
,
45
(
4
), pp.
268
275
.10.1016/j.cep.2005.07.004
19.
Mirzaei
,
M.
,
Hajabdollahi
,
H.
, and
Fadakar
,
H.
,
2017
, “
Multi-Objective Optimization of Shell-and-Tube Heat Exchanger by Constructal Theory
,”
Appl. Therm. Eng.
,
125
, pp.
9
19
.10.1016/j.applthermaleng.2017.06.137
20.
Wang
,
S.
,
Wen
,
J.
, and
Li
,
Y.
,
2009
, “
An Experimental Investigation of Heat Transfer Enhancement for a Shell-and-Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2433
2438
.10.1016/j.applthermaleng.2008.12.008
21.
Wang
,
Q.
,
Chen
,
Q.
,
Chen
,
G.
, and
Zeng
,
M.
,
2009
, “
Numerical Investigation on Combined Multiple Shell-Pass Shell-and-Tube Heat Exchanger With Continuous Helical Baffles
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1214
1222
.10.1016/j.ijheatmasstransfer.2008.09.009
22.
Master
,
B. I.
,
Chunangad
,
K. S.
, and
Pushpanathan
,
V.
,
2003
, “
Fouling Mitigation Using Helix Changer Heat Exchangers
,”
Proceedings of the ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications
, Santa Fe, NM, May 18–22, pp.
317
322
.https://www.researchgate.net/publication/237472981_Fouling_Mitigation_Using_Helixchanger_Heat_Exchangers
23.
You
,
Y.
,
Fan
,
A.
,
Huang
,
S.
, and
Liu
,
W.
,
2012
, “
Numerical Modeling and Experimental Validation of Heat Transfer and Flow Resistance on the Shell Side of a Shell-and-Tube Heat Exchanger With Flower Baffles
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7561
7569
.10.1016/j.ijheatmasstransfer.2012.07.058
24.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1974
, “
A Calculation Procedure for the Transient and Steady State Behavior of Shell-and-Tube Heat Exchanger
,”
N. F. Afgan and E. U. Schlunder, eds., Heat Exchanger Design and Theory Sourcebook, McGraw-Hill, New York
, pp.
155
176
.https://books.google.co.in/books/about/A_Calculation_Procedure_for_the_Transien.html?id=dGNNzAEACAAJ&redir_esc=y
25.
Butterworth
,
D.
,
1978
, “
A Model for Heat Transfer During Three-Dimensional Flow in Tube Bundles
,”
International Heat Transfer Conference Digital Library
, Toronto, ON, Canada, Aug. 7–11, pp.
219
224
.10.1615/IHTC6.1610
26.
Sha
,
W. T.
,
1980
, “
An Overview on Rod-Bundle Thermal-Hydraulic Analysis
,”
Nucl. Eng. Des.
,
62
(
1–3
), pp.
1
24
.10.1016/0029-5493(80)90018-7
27.
Sha
,
W. T.
,
Yang
,
C. I.
,
Kao
,
T. T.
, and
Cho
,
S. M.
,
1982
, “
Multidimensional Numerical Modeling of Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
3
), pp.
417
425
.10.1115/1.3245109
28.
Kern
,
D. Q.
,
1950
,
Process Heat Transfer
,
McGraw-Hill
,
New York, NY
.
29.
Bell
,
K. J.
,
1981
, “
Delaware Method for Shell Side Design
,”
Heat Exchangers: Thermal-Hydraulic Fundamentals and Design
, Taylor & Francis, Washington, DC
, pp.
581
618
.
30.
Whitaker
,
S.
,
1999
,
The Method of Volume Averaging
,
Springer
, Dordrecht, The
Netherlands
.
31.
Travkin
,
V. S.
,
2001
, “
Relating Semiconductor Heat Sink Local and Non-Local Experimental and Simulation Data to Upper Scale Design Goals
,”
ASME
Paper No. IMECE2001/HTD-24383.10.1115/IMECE2001/HTD-24383
32.
Travkin
,
V. S.
,
Catton
,
I.
,
Hu
,
K.
,
Ponomarenko
,
A. T.
, and
Shevchenko
,
V. G.
,
1999
, “
Transport Phenomena in Heterogeneous Media: Experimental Data Reduction and Analysis
,”
ASME Appl. Mech. Div.
,
233
, pp.
21
32
.10.1115/IMECE1999-0796
33.
Travkin
,
V. S.
, and
Catton
,
I.
,
1998
, “
Porous Media Transport Descriptions—Non-Local, Linear and Non-Linear Against Effective Thermal/Fluid Properties
,”
Adv. Colloid Interface Sci.
,
76
, pp.
389
443
.10.1016/S0001-8686(98)00054-2
34.
Sbutega
,
K.
,
2015
, “
Modeling and Optimization of Spatially Evolving Heat Sinks Using Volume Averaging Theory
,” Ph.D. thesis,
University of California
,
Los Angeles, CA
.
35.
Zhou
,
F.
, and
Catton
,
I.
,
2011
, “
Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks With Various Pin Cross-Sections
,”
Numer. Heat Transfer Part A Appl.
,
60
(
2
), pp.
107
128
.10.1080/10407782.2011.588574
36.
Catton
,
I.
,
2011
, “
Conjugate Heat Transfer Within a Heterogeneous Hierarchical Structure
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
10
), p.
103001
.10.1115/1.4003576
37.
Zhou
,
F.
,
Hansen
,
N. E.
,
Geb
,
D. J.
, and
Catton
,
I.
,
2011
, “
Obtaining Closure for Fin-and-Tube Heat Exchanger Modeling Based on Volume Averaging Theory (VAT)
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
11
), p.
111802
.10.1115/1.4004393
38.
Geb
,
D.
,
Zhou
,
F.
,
DeMoulin
,
G.
, and
Catton
,
I.
,
2013
, “
Genetic Algorithm Optimization of a Finned-Tube Heat Exchanger Modeled With Volume-Averaging Theory
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
8
), p.
82602
.10.1115/1.4024091
39.
Krishna
,
A. B.
,
Jin
,
K.
,
Ayyaswamy
,
P.
,
Catton
,
I.
, and
Fisher
,
T. S.
,
2022
, “
Modeling of Supercritical CO2 Shell-and-Tube Heat Exchangers Under Extreme Conditions. Part 1: Correlation Development
,”
ASME J. Heat Transfer-Trans. ASME
., epub.10.1115/1.4053510
40.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
41.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.https://ui.adsabs.harvard.edu/abs/1975STIA...7522028G/abstract
42.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Advances in Heat Transfer
,
J. P. Hartnett and T. F. Irvine, eds., Academic, San Diego, CA, pp.
503
564
.
43.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
, “Compact Heat Exchangers,” 3rd ed., McGraw-Hill, New York.
44.
Idelchick
,
I. E.
,
1986
,
Handbook of Hydraulic Resistance. Second Edition, Revised and Augmented
,
Hemisphere Publishing Corporation
,
Washington, DC
.
45.
Krishna
,
A. B.
,
Jin
,
K.
,
Ayyaswamy
,
P. S.
,
Catton
,
I.
, and
Fisher
,
T. S.
,
2021
, “
Akshayb29/Shell-and-Tube-Heat-Exchanger-STHX-Numerical-Model: Shell-and-Tube Heat Exchanger Numerical Model
,” Zenodo.10.5281/zenodo.5117859
46.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
47.
Haynes International, 2021, “
Haynes International - HAYNES® 282® Alloy
,” Haynes International, Kokomo, IN, accessed Feb. 3, 2022, http://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/282-brochure.pdf?sfvrsn=20
48.
Tubular Exchanger Manufacturers Association
,
2019
,
Standard of Tubular Exchanger Manufacturers Association
,
Tubular Exchanger Manufacturers Association
, New York.
49.
Mukherjee
,
R.
,
1998
, “
Effectively Design Shell-and-Tube Heat Exchangers
,”
Chem. Eng. Prog.
,
94
(
2
), pp.
21
37
.http://www.torr-engenharia.com.br/wpcontent/uploads/2011/05/exchanger.pdf
You do not currently have access to this content.