Abstract

High-temperature supercritical CO2 Brayton cycles are promising possibilities for future stationary power generation and hybrid electric propulsion applications. Heat exchangers are critical components in supercritical CO2 thermal cycles and require accurate correlations and comprehensive performance modeling under extreme temperatures and pressures. In this paper (Part I), new Colburn and friction factor correlations are developed to quantify shell-side heat transfer and friction characteristics of flow within heat exchangers in the shell-and-tube configuration. Using experimental and computational fluid dynamics (CFD) data sets from existing literature, multivariate regression analysis is conducted to achieve correlations that capture the effect of multiple critical geometric parameters. These correlations offer superior accuracy and versatility as compared to previous studies and predict the thermohydraulic performance of about 90% of the existing experimental and CFD data within ±15%. Supplementary thermohydraulic performance data are acquired from CFD simulations with supercritical CO2 as working fluid to validate the developed correlations and demonstrate its capability to be applied to supercrtical CO2 heat exchangers.

References

1.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.10.1016/j.net.2015.06.009
2.
Reyes-Belmonte
,
M. A.
,
Sebastián
,
A.
,
Romero
,
M.
, and
González-Aguilar
,
J.
,
2016
, “
Optimization of a Recompression Supercritical Carbon Dioxide Cycle for an Innovative Central Receiver Solar Power Plant
,”
Energy
,
112
, pp.
17
27
.10.1016/j.energy.2016.06.013
3.
Dyreby
,
J.
,
Klein
,
S.
,
Nellis
,
G.
, and
Reindl
,
D.
,
2014
, “
Design Considerations for Supercritical Carbon Dioxide Brayton Cycles With Recompression
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p. 101701.10.1115/1.4027936
4.
Liu
,
Y.
,
Wang
,
Y.
, and
Huang
,
D.
,
2019
, “
Supercritical CO2 Brayton Cycle: A State-of-the-Art Review
,”
Energy
,
189
, p.
115900
.10.1016/j.energy.2019.115900
5.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p. 111703.10.1115/1.4007199
6.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p. 041007.10.1115/1.4024030
7.
Milani
,
D.
,
Luu
,
M. T.
,
McNaughton
,
R.
, and
Abbas
,
A.
,
2017
, “
Optimizing an Advanced Hybrid of Solar-Assisted Supercritical CO2 Brayton Cycle: A Vital Transition for Low-Carbon Power Generation Industry
,”
Energy Convers. Manage.
,
148
, pp.
1317
1331
.10.1016/j.enconman.2017.06.017
8.
Mecheri
,
M.
, and
Le Moullec
,
Y.
,
2016
, “
Supercritical CO2 Brayton Cycles for Coal-Fired Power Plants
,”
Energy
,
103
, pp.
758
771
.10.1016/j.energy.2016.02.111
9.
Le Moullec
,
Y.
,
2013
, “
Conceptual Study of a High Efficiency Coal-Fired Power Plant With CO2 Capture Using a Supercritical CO2 Brayton Cycle
,”
Energy
,
49
, pp.
32
46
.10.1016/j.energy.2012.10.022
10.
Syblik
,
J.
,
Vesely
,
L.
,
Entler
,
S.
,
Stepanek
,
J.
, and
Dostal
,
V.
,
2019
, “
Analysis of Supercritical CO2 Brayton Power Cycles in Nuclear and Fusion Energy
,”
Fusion Eng. Des.
,
146
, pp.
1520
1523
.10.1016/j.fusengdes.2019.02.119
11.
Alsagri
,
A. S.
,
Chiasson
,
A.
, and
Gadalla
,
M.
,
2019
, “
Viability Assessment of a Concentrated Solar Power Tower With a Supercritical CO2 Brayton Cycle Power Plant
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p. 051006.10.1115/1.4043515
12.
Miao
,
H.
,
Wang
,
Z.
, and
Niu
,
Y.
,
2020
, “
Performance Analysis of Cooling System Based on Improved Supercritical CO2 Brayton Cycle for Scramjet
,”
Appl. Therm. Eng.
,
167
, p.
114774
.10.1016/j.applthermaleng.2019.114774
13.
Jacob
,
F.
,
Rolt
,
A.
,
Sebastiampillai
,
J.
,
Sethi
,
V.
,
Belmonte
,
M.
, and
Cobas
,
P.
,
2017
, “
Performance of a Supercritical CO2 Bottoming Cycle for Aero Applications
,”
Appl. Sci.
,
7
(
3
), p.
255
.10.3390/app7030255
14.
Kwon
,
J. S.
,
Son
,
S.
,
Heo
,
J. Y.
, and
Lee
,
J. I.
,
2020
, “
Compact Heat Exchangers for Supercritical CO2 Power Cycle Application
,”
Energy Convers. Manage.
,
209
, p.
112666
.10.1016/j.enconman.2020.112666
15.
Hinze
,
J. F.
,
Nellis
,
G. F.
, and
Anderson
,
M. H.
,
2017
, “
Cost Comparison of Printed Circuit Heat Exchanger to Low Cost Periodic Flow Regenerator for Use as Recuperator in a S-CO2 Brayton Cycle
,”
Appl. Energy
,
208
, pp.
1150
1161
.10.1016/j.apenergy.2017.09.037
16.
Kruizenga
,
A.
,
Li
,
H.
,
Anderson
,
M.
, and
Corradini
,
M.
,
2012
, “
Supercritical Carbon Dioxide Heat Transfer in Horizontal Semicircular Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
8
), p. 081802.10.1115/1.4006108
17.
Fronk
,
B. M.
, and
Rattner
,
A. S.
,
2016
, “
High-Flux Thermal Management With Supercritical Fluids
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
12
), p. 124501.10.1115/1.4034053
18.
Guo
,
J.
, and
Huai
,
X.
,
2017
, “
Performance Analysis of Printed Circuit Heat Exchanger for Supercritical Carbon Dioxide
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
6
), p. 061801.10.1115/1.4035603
19.
Clementoni
,
E. M.
,
Cox
,
T. L.
, and
King
,
M. A.
,
2017
, “
Response of a Compact Recuperator to Thermal Transients in a Supercritical Carbon Dioxide Brayton Cycle
,”
ASME
Paper No. GT2017-63058.10.1115/GT2017-63058
20.
Deng
,
T.
,
Li
,
X.
,
Wang
,
Q.
, and
Ma
,
T.
,
2019
, “
Dynamic Modelling and Transient Characteristics of Supercritical CO2 Recompression Brayton Cycle
,”
Energy
,
180
, pp.
292
302
.10.1016/j.energy.2019.05.074
21.
Yang
,
C. Y.
, and
Liao
,
K. C.
,
2017
, “
Effect of Experimental Method on the Heat Transfer Performance of Supercritical Carbon Dioxide in Microchannel
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
11
), p. 112404.10.1115/1.4036694
22.
Liao
,
S. M.
, and
Zhao
,
T. S.
,
2002
, “
Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
3
), pp.
413
420
.10.1115/1.1423906
23.
Li
,
Q.
,
Flamant
,
G.
,
Yuan
,
X.
,
Neveu
,
P.
, and
Luo
,
L.
,
2011
, “
Compact Heat Exchangers: A Review and Future Applications for a New Generation of High Temperature Solar Receivers
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4855
4875
.10.1016/j.rser.2011.07.066
24.
Jeong
,
J. H.
,
Kim
,
L. S.
,
Lee
,
J. K.
,
Ha
,
M. Y.
,
Kim
,
K. S.
, and
Ahn
,
Y. C.
,
2007
, “
Review of Heat Exchanger Studies for High-Efficiency Gas Turbines
,”
ASME
Paper No. GT2007-28071.10.1115/GT2007-28071
25.
Aquaro
,
D.
, and
Pieve
,
M.
,
2007
, “
High Temperature Heat Exchangers for Power Plants: Performance of Advanced Metallic Recuperators
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
389
400
.10.1016/j.applthermaleng.2006.07.030
26.
Jiang
,
Y.
,
Liese
,
E.
,
Zitney
,
S. E.
, and
Bhattacharyya
,
D.
,
2018
, “
Optimal Design of Microtube Recuperators for an Indirect Supercritical Carbon Dioxide Recompression Closed Brayton Cycle
,”
Appl. Energy
,
216
, pp.
634
648
.10.1016/j.apenergy.2018.02.082
27.
Monjurul Ehsan
,
M.
,
Guan
,
Z.
,
Klimenko
,
A. Y.
, and
Wang
,
X.
,
2018
, “
Design and Comparison of Direct and Indirect Cooling System for 25 MW Solar Power Plant Operated With Supercritical CO2 Cycle
,”
Energy Convers. Manage.
,
168
, pp.
611
628
.10.1016/j.enconman.2018.04.072
28.
Fourspring
,
P. M.
, and
Nehrbauer
,
J. P.
,
2012
, “
The Variation in Effectiveness of Low-Finned Tubes Within a Shell-and-Tube Heat Exchanger for Supercritical CO2
,”
ASME
Paper No. ICONE20-POWER2012-54116.10.1115/ICONE20-POWER2012-54116
29.
Cai
,
H. F.
,
Jiang
,
Y. Y.
,
Wang
,
T.
,
Liang
,
S. Q.
,
Guo
,
C.
, and
Zhu
,
Y. M.
,
2021
, “
An Optimization of Microtube Heat Exchangers for Supercritical CO2 Cooling Based on Numerical and Theoretical Analysis
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105532
.10.1016/j.icheatmasstransfer.2021.105532
30.
Chordia
,
L.
,
Portnoff
,
M. A.
, and
Green
,
E.
,
2017
, “High Temperature Heat Exchanger Design and Fabrication for Systems With Large Pressure Differentials,“ Technical Report No.
DE- FE0024012
.10.2172/1349235
31.
Cai
,
H. F.
,
Jiang
,
Y. Y.
,
Wang
,
T.
,
Liang
,
S. Q.
, and
Zhu
,
Y. M.
,
2020
, “
Experimental Investigation on Convective Heat Transfer and Pressure Drop of Supercritical CO2 and Water in Microtube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
163
, p.
120443
.10.1016/j.ijheatmasstransfer.2020.120443
32.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Advances in Heat Transfer
,
Elsevier
, J. P. Hartnett and T. F. Irvine, eds., Academic, San Diego, CA, pp.
503
564
.
33.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Ind. Eng. Chem.
,
16
(
2
), pp.
359
368
.https://www.bibsonomy.org/bibtex/2e5f300b68e4939294c32226ddd6a5a71/thorade
34.
Zukauskas
,
A.
,
1981
, “
Air Cooled Heat Exchangers
,”
Heat Exchangers: Thermal-Hydraulic Fundamentals and Design
, Hemisphere Publishing Corporation, New York, pp.
49
83
.
35.
Hwang
,
T. H.
, and
Yao
,
S. C.
,
1986
, “
A Simple Heat Transfer Correlation for Cross Flow in Tube Bundles
,”
Int. Commun. Heat Mass Transfer
,
13
(
1
), pp.
3
10
.10.1016/0735-1933(86)90067-9
36.
Grimson
,
E. D.
,
1937
, “
Correlation and Utilization of New Data on Flow Resistance and Heat Transfer Cross-Flow of Gases Over Tube Banks
,”
Trans. ASME
,
59
, pp.
583
594
.
37.
Pierson
,
O. L.
,
1937
, “
Experimental Investigation of the Influence of Tube Arrangement on Convection Heat Transfer and Flow Resistance in Cross Flow of Gases Over Tube Banks
,”
Trans. ASME
,
59
(
7
), pp.
563
572
.
38.
Gregorig
,
R.
,
1959
, “
Wärmeaustauscher, HR Sauerlander & Co
,”
AARU, Frankfurt am Main
,
Germany
.
39.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
, “
Compact Heat Exchangers
,” McGraw-Hill, New York.
40.
Žukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Advances in Heat Transfer
,
Elsevier
, Academic, New York, pp.
93
160
.
41.
Jakob
,
M.
,
1938
, “
Heat Transfer and Flow Resistance in Cross Flow of Gases Over Tube Banks
,”
Trans. ASME
,
60
, p.
384
.
42.
Gunter
,
A. Y.
, and
Shaw
,
W. A.
,
1945
, “
A General Correlation of Friction Factors for Various Types of Surfaces in Cross Flow
,”
Trans. ASME
,
67
(
8
), pp.
643
660
.
43.
Boucher
,
D. F.
, and
Lapple
,
C. E.
,
1948
, “
Pressure Drop Across Tube Banks-Critical Comparison of Available Data and of Proposed Methods of Correlation
,”
Chem. Eng. Prog.
,
44
(
2
), pp.
117
134
.
44.
Bergles
,
A. E.
,
1973
, “
Techniques to Augment Heat Transfer
,”
Handbook of Heat Transfer
,
McGraw-Hill Book Co
,
New York
, pp.
10
11
.
45.
Bergles
,
E. A.
,
1999
, “
The Imperative to Enhance Heat Transfer
,”
Heat Transfer Enhancement of Heat Exchangers
,
Springer
,
Dordrecht, The Netherlands
, pp.
13
29
.
46.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer
,
Higher Education Press
, Beijing, China.
47.
Yang
,
K.-S.
,
Chu
,
W.-H.
,
Chen
,
I.-Y.
, and
Wang
,
C.-C.
,
2007
, “
A Comparative Study of the Airside Performance of Heat Sinks Having Pin Fin Configurations
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4661
4667
.10.1016/j.ijheatmasstransfer.2007.03.006
48.
Şara
,
O.
,
2003
, “
Performance Analysis of Rectangular Ducts With Staggered Square Pin Fins
,”
Energy Convers. Manage.
,
44
(
11
), pp.
1787
1803
.10.1016/S0196-8904(02)00185-1
49.
Tian
,
E.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2015
, “
Numerical Simulation of Finned Tube Bank Across a Staggered Circular-Pin-Finned Tube Bundle
,”
Numer. Heat Transfer, Part A Appl.
,
68
(
7
), pp.
737
760
.10.1080/10407782.2015.1012855
50.
Sahiti
,
N.
,
Lemouedda
,
A.
,
Stojkovic
,
D.
,
Durst
,
F.
, and
Franz
,
E.
,
2006
, “
Performance Comparison of Pin Fin in-Duct Flow Arrays With Various Pin Cross-Sections
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1176
1192
.10.1016/j.applthermaleng.2005.10.042
51.
Biery
,
J. C.
,
1981
, “
Prediction of Heat Transfer Coefficients in Gas Flow Normal to Finned and Smooth Tube Banks
,”
ASME J. Heat Transfer-Trans. ASME
,
103
(
4
), pp.
705
714
.10.1115/1.3244530
52.
Mirkovic
,
Z.
,
1974
, “
Heat Transfer and Flow Resistance Correlation for Helically Finned and Staggered Tube Banks in Crossflow
,”
Heat Exchangers: Design and Theory Source Book
, N. H. Afgan and E. U. Schlunder, eds., pp.
559
584
.
53.
Zhou
,
F.
,
2014
,
Development of Closure for Heat Exchangers Based on Volume Averaging Theory
, UCLA
, Los Angeles, CA.
54.
Kim
,
N. H.
,
Youn
,
B.
, and
Webb
,
R. L.
,
1999
, “
Air-Side Heat Transfer and Friction Correlations for Plain Fin-and-Tube Heat Exchangers With Staggered Tube Arrangements
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
3
), pp.
662
667
.10.1115/1.2826030
55.
Zhou
,
F.
, and
Catton
,
I.
,
2012
, “
Volume Averaging Theory (VAT) Based Modeling and Closure Evaluation for Fin-and-Tube Heat Exchangers
,”
Heat Mass Transfer/Waerme- Und Stoffuebertragung
,
48
(
10
), pp.
1813
1823
.10.1007/s00231-012-1025-7
56.
Krishna
,
A. B.
,
Jin
,
K.
,
Ayyaswamy
,
P. S.
,
Catton
,
I.
, and
Fisher
,
T. S.
,
2021
, “
Akshayb29/Shell-and-Tube-Heat-Exchanger-STHX-Numerical-Model
: Shell-and-Tube Heat Exchanger Numerical Model,” Zenodo, Geneva, Switzerland.10.5281/zenodo.5117859
57.
Krishna
,
A. B.
,
Jin
,
K.
,
Ayyaswamy
,
P.
,
Catton
,
I.
, and
Fisher
,
T. S.
,
2022
, “
Modeling of Supercritical CO2 Shell-and-Tube Heat Exchangers Under Extreme Conditions. Part 2: Heat Exchanger Model
,”
ASME J. Heat Transfer-Trans. ASME
, epub.10.1115/1.4053511
You do not currently have access to this content.