Abstract

To date, most of electrocaloric devices reported can be simplified as a multilayer structure in which thermal source and sink are different materials at two ends. The thermal conduction in the multilayer structure is the key for the performance of the devices. In this paper, the analytical solutions for the thermal conduction in a multilayer structure with four layers are introduced. The middle two layers are electrocaloric materials. The analytical solutions are also simplified for a hot/cold plate with two sides being different media—a typical case for thermal treatment of materials. The analytical solutions include series with infinite terms. It is proved that these series are convergent so the sum of a series can be calculated using the first N terms. The equation for calculating the N is introduced. Based on the case study, it is found that the N is usually a small number, mostly less than 40 and rarely more than 100. The issues related to the application of the analytical solutions for the simulation of real electrocaloric devices are discussed, which includes the usage of multilayer ceramic capacitor, influence of electrodes, and characterization of thin film.

References

1.
Zhang
,
Q.
, and
Correia
,
T.
, eds.,
2014
,
Electrocaloric Materials: New Generation of Coolers
,
Springer
, Berlin
2.
Sand
,
J. R.
,
Fischer
,
S. K.
, and
Baxter
,
V. D.
,
1997
, “
Energy and Global Warming Impacts of HFC Refrigerants and Emerging Technologies
,” Oak Ridge National Lab,
Oak Ridge, TN
, Report No. CONF-970687-1.
3.
UN
,
1997
, “
Kyoto Protocol to the United Nations Framework Convention on Climate Change
,” Vol..2,
Kyoto, Japan
, Ch_XXVII_7_a.
4.
UN
,
1987
, “
Montreal Protocol on Substances That Deplete the Ozone Layer
,” Vol. 2,
Montreal, QC, Canada
, Ch_XXVII_7_a.
5.
Qian
,
S.
,
Nasuta
,
D.
,
Rhoads
,
A.
,
Wang
,
Y.
,
Geng
,
Y.
,
Hwang
,
Y.
,
Radermacher
,
R.
, and
Takeuchi
,
I.
,
2016
, “
Not-in-Kind Cooling Technologies: A Quantitative Comparison of Refrigerants and System Performance
,”
Int. J. Refrig.
,
62,
pp.
177
192
.10.1016/j.ijrefrig.2015.10.019
6.
Mischenko
,
A. S.
,
Zhang
,
Q.
,
Scott
,
J. F.
,
Whatmore
,
R. W.
, and
Mathur
,
N. D.
,
2006
, “
Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3
,”
Science
,
311
(
5765
), pp.
1270
1271
.10.1126/science.1123811
7.
Neese
,
B.
,
Chu
,
B.
,
Lu
,
S.-G.
,
Wang
,
Y.
,
Furman
,
E.
, and
Zhang
,
Q. M.
,
2008
, “
Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature
,”
Science
,
321
(
5890
), pp.
821
823
.10.1126/science.1159655
8.
Li
,
J.
,
Li
,
D. D.
,
Lu
,
B.
,
Yao
,
Y. B.
,
Tao
,
T.
,
Liang
,
B.
,
Lu
,
W. H.
,
Luo
,
G. L.
, and
Lu
,
S. G.
,
2018
, “
Large Electrocaloric Effect Obtained in Ba(SnxTi1−x)O3 Lead-Free Ceramics Using Direct and Indirect Measurements
,”
J. Adv. Dielectr.
,
8
(
5
), p.
1850038
.10.1142/S2010135X18500388
9.
Lu
,
B.
,
Li
,
P.
,
Tang
,
Z.
,
Yao
,
Y.
,
Gao
,
X.
,
Kleemann
,
W.
, and
Lu
,
S. G.
,
2017
, “
Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics
,”
Sci. Rep.
,
7
, p.
45335
.10.1038/srep45335
10.
Li
,
J.
,
Zhao
,
X.
,
Xu
,
Z.
,
Zhang
,
T.
,
Qian
,
X.
,
Hou
,
Y.
,
Yang
,
L.
, and
Zhang
,
S.
,
2017
, “
Electrocaloric Effect in Lead-Free Relaxor (1−x)(Sr0.7Bi0.2)TiO3+x(Na0.5Bi0.5)TiO3 Material System
,”
Mater. Lett.
,
187
, pp.
68
71
.10.1016/j.matlet.2016.10.058
11.
Zhao
,
Y.
,
Hao
,
X.
, and
Zhang
,
Q.
,
2015
, “
A Giant Electrocaloric Effect of a Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 Antiferroelectric Thick Film at Room Temperature
,”
J. Mater. Chem. C
,
3
(
8
), pp.
1694
1699
.10.1039/C4TC02381A
12.
Peng
,
B.
,
Fan
,
H.
, and
Zhang
,
Q.
,
2013
, “
A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3 Thin Film at Room Temperature
,”
Adv. Funct. Mater.
,
23
(
23
), pp.
2987
2992
.10.1002/adfm.201202525
13.
Ma
,
R.
,
Zhang
,
Z.
,
Tong
,
K.
,
Huber
,
D.
,
Kornbluh
,
R.
,
Ju
,
Y. S.
, and
Pei
,
Q.
,
2017
, “
Highly Efficient Electrocaloric Cooling With Electrostatic Actuation
,”
Science
,
357
(
6356
), pp.
1130
1134
.10.1126/science.aan5980
14.
Wang
,
Y. D.
,
Smullin
,
S. J.
,
Sheridan
,
M. J.
,
Wang
,
Q.
,
Eldershaw
,
C.
, and
Schwartz
,
D. E.
,
2015
, “
A Heat-Switch-Based Electrocaloric Cooler
,”
Appl. Phys. Lett.
,
107
(
13
), p.
134103
.10.1063/1.4932164
15.
Gu
,
H.
,
Qian
,
X. S.
,
Ye
,
H. J.
, and
Zhang
,
Q. M.
,
2014
, “
An Electrocaloric Refrigerator Without External Regenerator
,”
Appl. Phys. Lett.
,
105
(
16
), p.
162905
.10.1063/1.4898812
16.
Chukka
,
R.
,
Vandrangi
,
S.
,
Shannigrahi
,
S.
, and
Chen
,
L.
,
2013
, “
An Electrocaloric Device Demonstrator for Solid-State Cooling
,”
EPL
,
103
(
4
), p.
47011
.10.1209/0295-5075/103/47011
17.
Zhang
,
T.
,
Qian
,
X. S.
,
Gu
,
H.
,
Hou
,
Y.
, and
Zhang
,
Q. M.
,
2017
, “
An Electrocaloric Refrigerator With Direct Solid to Solid Regeneration
,”
Appl. Phys. Lett.
,
110
(
24
), p.
243503
.10.1063/1.4986508
18.
Epstein
,
R. I.
, and
Malloy
,
K. J.
,
2009
, “
Electrocaloric Devices Based on Thin-Film Heat Switches
,”
J. Appl. Phys.
,
106
(
6
), p.
064509
.10.1063/1.3190559
19.
Feng
,
D.
,
Yao
,
S.
,
Zhang
,
T.
, and
Zhang
,
Q.
,
2016
, “
Modeling of Smart Heat Pump Using Thermoelectric and Electrocaloric Materials
,”
ASME J. Electron. Packag.
,
138
(
4
), p.
041004
.10.1115/1.4034751
20.
Ju
,
Y. S.
,
2010
, “
Solid-State Refrigeration Based on the Electrocaloric Effect for Electronics Cooling
,”
ASME J. Electron. Packag.
,
132
(
4
), p.
041004
.10.1115/1.4002896
21.
Bradeško
,
A.
,
Juričić
,
Đ.
,
Santo Zarnik
,
M.
,
Malič
,
B.
,
Kutnjak
,
Z.
, and
Rojac
,
T.
,
2016
, “
Coupling of the Electrocaloric and Electromechanical Effects for Solid-State Refrigeration
,”
Appl. Phys. Lett.
,
109
(
14
), p.
143508
.10.1063/1.4964124
22.
Guo
,
D.
,
Gao
,
J.
,
Yu
,
Y. J.
,
Santhanam
,
S.
,
Slippey
,
A.
,
Fedder
,
G. K.
,
McGaughey
,
A. J. H.
, and
Yao
,
S. C.
,
2014
, “
Design and Modeling of a Fluid-Based Micro-Scale Electrocaloric Refrigeration System
,”
Int. J. Heat Mass Transfer
,
72
, pp.
559
564
.10.1016/j.ijheatmasstransfer.2014.01.043
23.
Crossley
,
S.
,
McGinnigle
,
J. R.
,
Kar-Narayan
,
S.
, and
Mathur
,
N. D.
,
2014
, “
Finite-Element Optimisation of Electrocaloric Multilayer Capacitors
,”
Appl. Phys. Lett.
,
104
(
8
), p.
082909
.10.1063/1.4866256
24.
Chukka
,
R.
,
Shannigrahi
,
S.
, and
Chen
,
L.
,
2012
, “
Investigations of Cooling Efficiencies in Solid-State Electrocaloric Device
,”
Integr. Ferroelectr.
,
133
(
1
), pp.
3
8
.10.1080/10584587.2012.660852
25.
Ožbolt
,
M.
,
Kitanovski
,
A.
,
Tušek
,
J.
, and
Poredoš
,
A.
,
2014
, “
Electrocaloric Refrigeration: Thermodynamics, State of the Art and Future Perspectives
,”
Int. J. Refrig.
,
40
, pp.
174
188
.10.1016/j.ijrefrig.2013.11.007
26.
Jia
,
Y.
, and
Sungtaek Ju
,
Y.
,
2012
, “
A Solid-State Refrigerator Based on the Electrocaloric Effect
,”
Appl. Phys. Lett.
,
100
(
24
), p.
242901
.10.1063/1.4729038
27.
Najmi
,
F.
,
Shen
,
W.
,
Cremaschi
,
L.
, and
Cheng
,
Z.
,
2020
, “
Electrocaloric Devices Part I: Analytical Solution of One-Dimensional Transient Heat Conduction in a Multilayer Electrocaloric System
,”
J. Adv. Dielectr.
,
10
(
6
), p.
2050028
.10.1142/S2010135X20500289
28.
Najmi
,
F.
,
He
,
J.
,
Cremaschi
,
L.
, and
Cheng
,
Z.-Y.
,
2020
, “
Electrocaloric Devices Part II: All-Solid Heat Pump Without Moving Parts
,”
J. Adv. Dielectr.
,
10
(
6
), p.
2050029
.10.1142/S2010135X20500290
29.
Gu
,
H.
,
Qian
,
X.
,
Li
,
X.
,
Craven
,
B.
,
Zhu
,
W.
,
Cheng
,
A.
,
Yao
,
S. C.
, and
Zhang
,
Q. M.
,
2013
, “
A Chip Scale Electrocaloric Effect Based Cooling Device
,”
Appl. Phys. Lett.
,
102
(
12
), p.
122904
.10.1063/1.4799283
30.
Luikov
,
A.
,
1968
,
Analytical Heat Diffusion Theroy
,
Academic Press
,
New York/London
.
31.
Valant
,
M.
,
2012
, “
Electrocaloric Materials for Future Solid-State Refrigeration Technologies
,”
Prog. Mater. Sci.
,
57
(
6
), pp.
980
1009
.10.1016/j.pmatsci.2012.02.001
32.
Kutnjak
,
Z.
, and
Rožič
,
B.
,
2015
, “
Electrocaloric Effect: Theory, Measurements, and Applications
,”
Wiley Encyclopedia of Electrical and Electronics Engineering
, John
Wiley & Sons
, New York.
33.
Akcay
,
G.
,
Alpay
,
S. P.
,
Rossetti
,
G. A.
, and
Scott
,
J. F.
,
2008
, “
Influence of Mechanical Boundary Conditions on the Electrocaloric Properties of Ferroelectric Thin Films
,”
J. Appl. Phys.
,
103
(
2
), p.
024104
.10.1063/1.2831222
34.
Fang
,
J.
,
Frederich
,
H.
, and
Pilon
,
L.
,
2010
, “
Harvesting Nanoscale Thermal Radiation Using Pyroelectric Materials
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
9
), p.
092701
.10.1115/1.4001634
35.
Kakac
,
S.
, and
Yaner
,
Y.
,
1993
, “
Fourier's Law of Heat Conduction
,”
Heat Conduction
, Taylor & Francis, Washington, DC, p.
363
.
36.
Hummel
,
R. E.
,
2000
, “
Electrical Properties of Polymers, Ceramics, Dielectrics, and Amorphous Materials
,”
Electronic Properties of Materials
,
Springer
,
New York
, pp.
185
189
.
37.
Karmanenko
,
S. F.
,
Pakhomov
,
O. V.
,
Prudan
,
A. M.
,
Starkov
,
A. S.
, and
Eskov
,
A.
,
2007
, “
Layered Ceramic Structure Based on the Electrocaloric Elements Working as a Solid State Cooling Line
,”
J. Eur. Ceram. Soc.
,
27
(
8–9
), pp.
3109
3112
.10.1016/j.jeurceramsoc.2006.11.033
38.
Khodayari
,
A.
, and
Mohammadi
,
S.
,
2011
, “
Solid-State Cooling Line Based on the Electrocaloric Effect
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
58
(
3
), pp.
503
508
.10.1109/TUFFC.2011.1834
39.
Kreyszic
,
E.
,
1988
, “
Partial Differential Equations
,”
Advanced Engineering Matthemtics
,
R.
Pirtle
, ed.,
Don Ford
, RR Donnelley & Sons, Jefferson City, MO, pp.
645
716
.
40.
Xin
,
R. C.
, and
Tao
,
W. Q.
,
1994
, “
Analytical Solution for Transient Heat Conduction in Two Semi-Infinite Bodies in Contact
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
1
), pp.
224
228
.10.1115/1.2910860
41.
Smullin
,
S. J.
,
Wang
,
Y.
, and
Schwartz
,
D. E.
,
2015
, “
System Optimization of a Heat-Switch-Based Electrocaloric Heat Pump
,”
Appl. Phys. Lett.
,
107
(
9
), p.
093903
.10.1063/1.4928716
42.
Liu
,
Y.
,
Scott
,
J. F.
, and
Dkhil
,
B.
,
2016
, “
Direct and Indirect Measurements on Electrocaloric Effect: Recent Developments and Perspectives
,”
Appl. Phys. Rev.
,
3
(
3
), p.
031102
.10.1063/1.4958327
43.
Kutnjak
,
Z.
, and
Rožič
,
B.
,
2014
, “
Indirect and Direct Measurements of the Electrocaloric Effect
,”
Electrocaloric Matrials: New Generation of Coolers
,
Springer
, Berlin, pp.
147
182
.
44.
Kar-Narayan
,
S.
, and
Mathur
,
N. D.
,
2010
, “
Direct and Indirect Electrocaloric Measurements Using Multilayer Capacitors
,”
J. Phys. D: Appl. Phys.
,
43
(
3
), p.
032002
.10.1088/0022-3727/43/3/032002
45.
Kar-Narayan
,
S.
, and
Mathur
,
N. D.
,
2009
, “
Predicted Cooling Powers for Multilayer Capacitors Based on Various Electrocaloric and Electrode Materials
,”
Appl. Phys. Lett.
,
95
(
24
), p.
242903
.10.1063/1.3275013
46.
Bai
,
Y.
,
Zheng
,
G.
, and
Shi
,
S.
,
2010
, “
Direct Measurement of Giant Electrocaloric Effect in BaTiO3 Multilayer Thick Film Structure Beyond Theoretical Prediction
,”
Appl. Phys. Lett.
,
96
(
19
), p.
192902
.10.1063/1.3430045
47.
Nair
,
B.
,
Usui
,
T.
,
Crossley
,
S.
,
Kurdi
,
S.
,
Guzmán-Verri
,
G. G.
,
Moya
,
X.
,
Hirose
,
S.
, and
Mathur
,
N. D.
,
2019
, “
Large Electrocaloric Effects in Oxide Multilayer Capacitors Over a Wide Temperature Range
,”
Nature
,
575
(
7783
), pp.
468
472
.10.1038/s41586-019-1634-0
48.
Hirose
,
S.
,
Usui
,
T.
,
Crossley
,
S.
,
Nair
,
B.
,
Ando
,
A.
,
Moya
,
X.
, and
Mathur
,
N. D.
,
2016
, “
Progress on Electrocaloric Multilayer Ceramic Capacitor Development
,”
APL Mater.
,
4
(
6
), p.
064105
.10.1063/1.4950796
49.
Zhang
,
L.
, and
Cheng
,
Z.-Y.
,
2011
, “
Development of Polymer-Based 0–3 Composites With High Dielectric Constant
,”
J. Adv. Dielectr.
,
1
(
4
), pp.
389
406
.10.1142/S2010135X11000574
You do not currently have access to this content.