Abstract

A novel nonintrusive technique based on an air-coupled ultrasonic transducer was used to study the hydrodynamic behavior of falling film over metal foam layered horizontal tube. Copper foam having a porosity of 90.5%, brazed over a copper tube of 25.4 mm diameter was used in this study. Falling film thickness distribution in the circumferential direction and the dynamic characteristics of falling film were studied in the falling film Reynolds number range of 356–715, and at a tube spacing of 5 mm and 15 mm. The falling film characteristics over metal foam layered horizontal tubes were compared with that over a plain horizontal tube surface. Heat transfer studies of falling film over metal foam layered tube were studied in an evaporator of a multi-effect desalination system by experiment. It was observed that the falling film heat transfer coefficient was enhanced 2.7 times by the application of metal foam over the plain horizontal tube. The measurements obtained from hydrodynamic and heat transfer studies were compared with the predictions made by a computational model and were found to be in good agreement. Metal foam properties required for the computational model were obtained using a microcomputed tomography-based study.

References

1.
Han
,
J.
, and
Fletcher
,
L. S.
,
1985
, “
Falling Film Evaporation and Boiling in Circumferential and Axial Grooves on Horizontal Tubes
,”
Ind. Eng. Chem. Process Des. Dev.
,
24
(
3
), pp.
570
575
.10.1021/i200030a009
2.
Abraham
,
R.
, and
Mani
,
A.
,
2015
, “
Heat Transfer Characteristics in Horizontal Tube Bundles for Falling Film Evaporation in Multi-Effect Desalination System
,”
Desalination
,
375
, pp.
129
137
.10.1016/j.desal.2015.06.018
3.
Köroğlu
,
B.
,
Bogan
,
N.
, and
Park
,
C.
,
2013
, “
Effects of Tube Row on Heat Transfer and Surface Wetting of Microscale Porous-Layer Coated, Horizontal-Tube, Falling-Film Evaporator
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
4
), p. 041802.10.1115/1.4023014
4.
Roques
,
J.
,
Dupont
,
V.
, and
Thome
,
J.
,
2002
, “
Falling Film Transitions on Plain and Enhanced Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
3
), pp.
491
499
.10.1115/1.1458017
5.
Qi
,
C.-h.
,
Han
,
X.
,
Lv
,
H.-Q.
,
Xing
,
Y.-L.
, and
Han
,
KX.
,
2018
, “
Experimental Study of Heat Transfer and Scale Formation of Spiral Grooved Tube in the Falling Film Distilled Desalination
,”
Int. J. Heat Mass Transfer
,
119
, pp.
654
664
.10.1016/j.ijheatmasstransfer.2017.11.148
6.
Liu
,
Z.-H.
, and
Yi
,
J.
,
2001
, “
Enhanced Evaporation Heat Transfer of Water and r-11 Falling Film With the Roll-Worked Enhanced Tube Bundle
,”
Exp. Therm. Fluid Sci.
,
25
(
6
), pp.
447
455
.10.1016/S0894-1777(01)00101-7
7.
Karmakar
,
A.
, and
Acharya
,
S.
,
2020
, “
Wettability Effects on Falling Film Flow and Heat Transfer Over Horizontal Tubes in Jet Flow Mode
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
12
), p.
122301
.10.1115/1.4048088
8.
Manetti
,
L. L.
,
Ribatski
,
G.
,
de Souza
,
R. R.
, and
Cardoso
,
E. M.
,
2020
, “
Pool Boiling Heat Transfer of Hfe-7100 on Metal Foams
,”
Exp. Therm. Fluid Sci.
,
113
, p.
110025
.10.1016/j.expthermflusci.2019.110025
9.
Tsolas
,
N.
, and
Chandra
,
S.
,
2012
, “
Forced Convection Heat Transfer in Spray Formed Copper and Nickel Foam Heat Exchanger Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
6
), p.
062602
.10.1115/1.4006015
10.
Kumar
,
C. S.
, and
Pattamatta
,
A.
,
2018
, “
Assessment of Heat Transfer Enhancement Using Metallic Porous Foam Configurations in Laminar Slot Jet Impingement: An Experimental Study
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
2
), p.
022202
.10.1115/1.4037540
11.
Allen
,
M. J.
,
Bergman
,
T. L.
,
Faghri
,
A.
, and
Sharifi
,
N.
,
2015
, “
Robust Heat Transfer Enhancement During Melting and Solidification of a Phase Change Material Using a Combined Heat Pipe-Metal Foam or Foil Configuration
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
10
), p.
102301
.10.1115/1.4029970
12.
Tan
,
W. C.
,
Saw
,
L. H.
,
San Thiam
,
H.
,
Xuan
,
J.
,
Cai
,
Z.
, and
Yew
,
M. C.
,
2018
, “
Overview of Porous Media/Metal Foam Application in Fuel Cells and Solar Power Systems
,”
Renewable Sustainable Energy Rev.
,
96
, pp.
181
197
.10.1016/j.rser.2018.07.032
13.
Du Plessis
,
P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
,
1994
, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3545
3553
.10.1016/0009-2509(94)00170-7
14.
Yang
,
X.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2014
, “
An Analytical Model for Permeability of Isotropic Porous Media
,”
Phys. Lett. A
,
378
(
30–31
), pp.
2308
2311
.10.1016/j.physleta.2014.06.002
15.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
16.
Bonnet
,
J.-P.
,
Topin
,
F.
, and
Tadrist
,
L.
,
2008
, “
Flow Laws in Metal Foams: Compressibility and Pore Size Effects
,”
Transp. Porous Media
,
73
(
2
), pp.
233
254
.10.1007/s11242-007-9169-5
17.
Mancin
,
S.
,
Zilio
,
C.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2010
, “
Pressure Drop During Air Flow in Aluminum Foams
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3121
3130
.10.1016/j.ijheatmasstransfer.2010.03.015
18.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2013
, “
Air Forced Convection Through Metal Foams: Experimental Results and Modeling
,”
Int. J. Heat Mass Transfer
,
62
, pp.
112
123
.10.1016/j.ijheatmasstransfer.2013.02.050
19.
Hossain
,
M. S.
, and
Shabani
,
B.
,
2018
, “
Air Flow Through Confined Metal Foam Passage: Experimental Investigation and Mathematical Modelling
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
13
25
.10.1016/j.expthermflusci.2018.07.018
20.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
,
2002
, “
Pressure Drop Modelling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
,
57
(
14
), pp.
2781
2789
.10.1016/S0009-2509(02)00166-5
21.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
,
2003
, “
Simulations of Flow Through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
,
24
(
6
), pp.
825
834
.10.1016/j.ijheatfluidflow.2003.08.002
22.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
8
), pp.
793
799
.10.1115/1.2227038
23.
Yang
,
X.
,
Li
,
Y.
,
Zhang
,
L.
,
Jin
,
L.
,
Hu
,
W.
, and
Jian Lu
,
T.
,
2018
, “
Thermal and Fluid Transport in Micro-Open-Cell Metal Foams: Effect of Node Size
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
1
), p.
014502
.10.1115/1.4037394
24.
Wang
,
Y.
,
Wang
,
J.
, and
Jia
,
P.
,
2011
, “
Performance of Forced Convection Heat Transfer in Porous Media Based on Gibson–Ashby Constitutive Model
,”
Heat Transfer Eng.
,
32
(
11–12
), pp.
1093
1098
.10.1080/01457632.2011.556508
25.
Diani
,
A.
,
Bodla
,
K. K.
,
Rossetto
,
L.
, and
Garimella
,
S. V.
,
2015
, “
Numerical Investigation of Pressure Drop and Heat Transfer Through Reconstructed Metal Foams and Comparison Against Experiments
,”
Int. J. Heat Mass Transfer
,
88
, pp.
508
515
.10.1016/j.ijheatmasstransfer.2015.04.038
26.
Otaru
,
A.
,
2020
, “
The Permeability of Replicated Microcellular Structures in the Darcy Regime
,”
AIChE J.
,
66
(
5
), p.
e16915
.https://doi.org/10.1002/aic.16915
27.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. M.
,
Bianco
,
N.
,
Chiu
,
W. K.
, and
Naso
,
V.
,
2014
, “
Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
11
), p.
112601
.10.1115/1.4028113
28.
Jayakumar
,
A.
, and
Mani
,
A.
,
2021
, “
Image-Based Method for Evaluation of Effective Thermal Conductivity of Metal Foam With Hollow Ligaments
,”
Int. J. Heat Mass Transfer
,
164
, p.
120490
.10.1016/j.ijheatmasstransfer.2020.120490
29.
Zhao
,
C.-Y.
,
Ji
,
W.-T.
,
Jin
,
P.-H.
,
Zhong
,
Y.-J.
, and
Tao
,
W.-Q.
,
2018
, “
Hydrodynamic Behaviors of the Falling Film Flow on a Horizontal Tube and Construction of New Film Thickness Correlation
,”
Int. J. Heat Mass Transfer
,
119
, pp.
564
576
.10.1016/j.ijheatmasstransfer.2017.11.086
30.
Mascarenhas
,
N.
, and
Mudawar
,
I.
,
2013
, “
Study of the Influence of Interfacial Waves on Heat Transfer in Turbulent Falling Films
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1106
1121
.10.1016/j.ijheatmasstransfer.2013.08.100
31.
Abraham
,
R.
, and
Mani
,
A.
,
2013
, “
Effect of Flame Spray Coating on Falling Film Evaporation for Multi Effect Distillation System
,”
Desalin. Water Treat.
,
51
(
4–6
), pp.
822
829
.10.1080/19443994.2012.697347
32.
Fiorentino
,
M.
, and
Starace
,
G.
,
2016
, “
Numerical Investigations on Two-Phase Flow Modes in Evaporative Condensers
,”
Appl. Therm. Eng.
,
94
, pp.
777
785
.10.1016/j.applthermaleng.2015.10.099
33.
Tahir
,
F.
,
Mabrouk
,
A.
, and
Koç
,
M.
,
2020
, “
Impact of Surface Tension and Viscosity on Falling Film Thickness in Multi-Effect Desalination (MED) Horizontal Tube Evaporator
,”
Int. J. Therm. Sci.
,
150
, p.
106235
.10.1016/j.ijthermalsci.2019.106235
34.
Bigham
,
S.
,
KouhiKamali
,
R.
, and
Noori Rahim Abadi
,
S.
,
2015
, “
Two-Phase Flow Numerical Simulation and Experimental Verification of Falling Film Evaporation on a Horizontal Tube Bundle
,”
Desalin. Water Treat.
,
55
(
8
), pp.
2009
2022
.10.1080/19443994.2014.937750
35.
Tahir
,
F.
,
Mabrouk
,
A.
, and
Koc
,
M.
,
2019
, “
Review on CFD Analysis of Horizontal Falling Film Evaporators in Multi Effect Desalination Plants
,”
Desalin. Water Treat.
,
166
, pp.
296
320
.10.5004/dwt.2019.24487
36.
Shen
,
S.
,
Chen
,
X.
,
Mu
,
X.
, and
Jiang
,
C.
,
2017
, “
Experimental Studies on Heat Transfer Coefficients of Horizontal Tube Falling Film Evaporation With Seawater
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
1
), p.
011504
.10.1115/1.4034682
37.
Odabaee
,
M.
,
Hooman
,
K.
, and
Gurgenci
,
H.
,
2011
, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Cylinder in Cross-Flow
,”
Transp. Porous Media
,
86
(
3
), pp.
911
923
.10.1007/s11242-010-9664-y
38.
Mohammadpour-Ghadikolaie
,
M.
,
Saffar-Avval
,
M.
,
Mansoori
,
Z.
,
Alvandifar
,
N.
, and
Rahmati
,
N.
,
2019
, “
Heat Transfer Investigation of a Tube Partially Wrapped by Metal Porous Layer as a Potential Novel Tube for Air Cooled Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
1
), p.
011802
.10.1115/1.4041795
39.
Wang
,
Y.
,
Shu
,
G.
,
Yu
,
G.
,
Tian
,
H.
,
Ma
,
X.
, and
Chen
,
T.
,
2018
, “
Numerical Analysis of Forced Convection of High-Temperature Exhaust Gas Around a Metal-Foam Wrapped Cylinder
,”
Int. J. Heat Mass Transfer
,
119
, pp.
742
751
.10.1016/j.ijheatmasstransfer.2017.11.057
40.
Lee
,
S.
,
Köroğlu
,
B.
, and
Park
,
C.
,
2012
, “
Experimental Investigation of Capillary-Assisted Solution Wetting and Heat Transfer Using a Micro-Scale, Porous-Layer Coating on Horizontal-Tube, Falling-Film Heat Exchanger
,”
Int. J. Refrig.
,
35
(
4
), pp.
1176
1187
.10.1016/j.ijrefrig.2011.11.015
41.
Zhou
,
F.
,
Lu
,
T.
,
Ding
,
G.
, and
Yang
,
G.
,
2020
, “
Experimental Research on Flow Mode Transition of Falling Film Flow on Metal Foam Wrapped Tubes
,”
Exp. Therm. Fluid Sci.
,
118
, p.
110154
.10.1016/j.expthermflusci.2020.110154
42.
Maliackal
,
A. K.
,
Ganesan
,
A.
, and
Mani
,
A.
,
2021
, “
Interferometric Analysis of Flow Around a Horizontal Tube Falling Film Evaporator for MED Systems
,”
Int. J. Therm. Sci.
,
161
, p.
106745
.10.1016/j.ijthermalsci.2020.106745
43.
Wei
,
Z.
,
Wang
,
Y.
,
Wu
,
Z.
,
Peng
,
X.
, and
Yu
,
G.
,
2020
, “
Wave Characteristics of the Falling Liquid Film in the Development Region at High Reynolds Numbers
,”
Chem. Eng. Sci.
,
215
, p.
115454
.10.1016/j.ces.2019.115454
44.
Al-Aufi
,
Y.
,
Hewakandamby
,
B.
,
Dimitrakis
,
G.
,
Holmes
,
M.
,
Hasan
,
A.
, and
Watson
,
N.
,
2019
, “
Thin Film Thickness Measurements in Two Phase Annular Flows Using Ultrasonic Pulse Echo Techniques
,”
Flow Meas. Instr.
,
66
, pp.
67
78
.10.1016/j.flowmeasinst.2019.02.008
45.
Yan
,
L.
,
Wang
,
Y.
,
Wu
,
Z.
,
Dai
,
Z.
,
Yu
,
G.
, and
Wang
,
F.
,
2017
, “
Research of Vertical Falling Film Behavior in Scrubbing-Cooling Tube
,”
Chem. Eng. Res. Des.
,
117
, pp.
627
636
.10.1016/j.cherd.2016.11.010
46.
Jayakumar
,
A.
,
Balachandran
,
A.
,
Mani
,
A.
, and
Balasubramaniam
,
K.
,
2019
, “
Falling Film Thickness Measurement Using Air-Coupled Ultrasonic Transducer
,”
Exp. Therm. Fluid Sci.
,
109
, p.
109906
.10.1016/j.expthermflusci.2019.109906
47.
Gibou
,
F.
,
Chen
,
L.
,
Nguyen
,
D.
, and
Banerjee
,
S.
,
2007
, “
A Level Set Based Sharp Interface Method for the Multiphase Incompressible Navier–Stokes Equations With Phase Change
,”
J. Comp. Phys.
,
222
(
2
), pp.
536
555
.10.1016/j.jcp.2006.07.035
48.
Kharangate
,
C. R.
,
Lee
,
H.
, and
Mudawar
,
I.
,
2015
, “
Computational Modeling of Turbulent Evaporating Falling Films
,”
Int. J. Heat Mass Transfer
,
81
, pp.
52
62
.10.1016/j.ijheatmasstransfer.2014.09.068
49.
Hou
,
H.
,
Bi
,
Q.
,
Ma
,
H.
, and
Wu
,
G.
,
2012
, “
Distribution Characteristics of Falling Film Thickness Around a Horizontal Tube
,”
Desalination
,
285
, pp.
393
398
.10.1016/j.desal.2011.10.020
50.
Nusselt
,
W.
,
1916
, “
Die Oberflächenkondensation Des Wasserdampfes
,”
Z. Ver. Dt. Ing.
,
60
(
3
), pp. 541–546,
569
575
.
51.
Chyu
,
M.-C.
, and
Bergles
,
A.
,
1987
, “
An Analytical and Experimental Study of Falling-Film Evaporation on a Horizontal Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
4
), pp.
983
990
.10.1115/1.3248214
You do not currently have access to this content.