Abstract

In this study, a typical three-dimensional model of single channel mono-block-layer build solid oxide fuel cell (MOLB-type SOFC) was developed. The effects of rib width and cathode thickness on the species concentration distribution, electrochemical performance, and temperature distribution of MOLB-type SOFC were investigated. The results show that adapting a smaller rib width can improve the uniformity of gas distribution, decrease the concentration polarization, and improve the output performance of SOFC. The performance of the cell can be significantly improved by thickening the cathode electrode. When the cathode thickness is 0.45 mm, the maximum output power density is improved by 53.69% compared with that at 0.15 mm. With the increase of the cathode thickness, the enhancement of the cell performance by increasing the cathode thickness gradually decreases. In addition, as the cathode thickness increases, the concentration polarization and temperature gradient of the cell gradually rise, while the activation polarization gradually decreases.

References

1.
Koo
,
T.
,
Kim
,
Y. S.
,
Lee
,
D.
,
Yu
,
S.
, and
Lee
,
Y. D.
,
2021
, “
System Simulation and Exergetic Analysis of Solid Oxide Fuel Cell Power Generation System With Cascade Configuration
,”
Energy
,
214
, p.
119087
.10.1016/j.energy.2020.119087
2.
Choudhury
,
A.
,
Chandra
,
H.
, and
Arora
,
A.
,
2013
, “
Application of Solid Oxide Fuel Cell Technology for Power Generation—a Review
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
430
442
.10.1016/j.rser.2012.11.031
3.
Bae
,
Y.
,
Lee
,
S.
, and
Hong
,
J.
,
2019
, “
The Effect of Anode Microstructure and Fuel Utilization on Current Relaxation and Concentration Polarization of Solid Oxide Fuel Cell Under Electrical Load Change
,”
Energy Convers. Manage.
,
201
, p.
112152
.10.1016/j.enconman.2019.112152
4.
Kim
,
Y. J.
, and
Lee
,
M. C.
,
2017
, “
Numerical Investigation of Flow/Heat Transfer and Structural Stress in a Planar Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18504
18513
.10.1016/j.ijhydene.2017.04.140
5.
Nerat
,
M.
, and
Juričić
,
Đ.
,
2016
, “
A Comprehensive 3-D Modeling of a Single Planar Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
41
(
5
), pp.
3613
3627
.10.1016/j.ijhydene.2015.11.136
6.
Yan
,
D.
,
Bin
,
Z.
,
Fang
,
D. W.
,
Luo
,
J.
,
Wang
,
X. P.
,
Pu
,
J.
,
Chi
,
B.
,
Jian
,
L.
, and
Zhang
,
Y. S.
,
2013
, “
Feasibility Study of an External Manifold for Planar Intermediate-Temperature Solid Oxide Fuel Cells Stack
,”
Int. J. Hydrogen Energy
,
38
(
1
), pp.
660
666
.10.1016/j.ijhydene.2012.06.020
7.
Hwang
,
J. J.
,
Chen
,
C. K.
, and
Lai
,
D. Y.
,
2005
, “
Detailed Characteristic Comparison Between Planar and MOLB-Type SOFCs
,”
J. Power Sources
,
143
(
1–2
), pp.
75
83
.10.1016/j.jpowsour.2004.11.049
8.
Lu
,
X.
,
Bertei
,
A.
,
Heenan
,
T. M. M.
,
Wu
,
Y.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2019
, “
Multi-Length Scale Microstructural Design of Micro-Tubular Solid Oxide Fuel Cells for Optimised Power Density and Mechanical Robustness
,”
J. Power Sources
,
434
, p.
226744
.10.1016/j.jpowsour.2019.226744
9.
Tikiz
,
I.
,
Taymaz
,
I.
, and
Pehlivan
,
H.
,
2019
, “
CFD Modelling and Experimental Validation of Cell Performance in a 3-D Planar SOFC
,”
Int. J. Hydrogen Energy
,
44
(
29
), pp.
15441
15455
.10.1016/j.ijhydene.2019.04.152
10.
Shen
,
S. L.
,
Wang
,
Z. X.
,
Liu
,
Y.
,
Zhang
,
Q.
, and
Zheng
,
K. Q.
,
2018
, “
A New Experimental Method to Estimate the Leakage Current in the Solid Oxide Fuel Cell With a Mixed Ionic and Electronic Conducting Electrolyte
,”
J. Power Sources
,
406
, pp.
88
95
.10.1016/j.jpowsour.2018.10.006
11.
Timurkutluk
,
B.
,
Timurkutluk
,
C.
,
Mat
,
M. D.
, and
Kaplan
,
Y.
,
2016
, “
A Review on Cell/Stack Designs for High Performance Solid Oxide Fuel Cells
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
1101
1121
.10.1016/j.rser.2015.12.034
12.
Ramírez-Minguela
,
J. J.
,
Mendoza-Miranda
,
J. M.
,
Muñoz-Carpio
,
V. D.
,
Rangel-Hernández
,
V. H.
,
Pérez-García
,
V.
, and
Rodríguez-Muñoz
,
J. L.
,
2014
, “
Internal Reforming of Methane in a Mono-Block-Layer Build Solid Oxide Fuel Cell With an Embedding Porous Pipe: Numerical Analysis
,”
Energy Convers. Manage.
,
79
, pp.
461
469
.10.1016/j.enconman.2013.12.061
13.
Kim
,
Y. J.
,
Jung
,
W. N.
,
Yu
,
J. H.
,
Kim
,
H. J.
,
Yun
,
K. S.
,
Kang
,
D. G.
, and
Lee
,
M. C.
,
2020
, “
Design and Analysis of SOFC Stack With Different Types of External Manifolds
,”
Int. J. Hydrogen Energy
,
45
(
53
), pp.
29143
29154
.10.1016/j.ijhydene.2020.07.145
14.
Xu
,
Z.
,
Zhang
,
X.
,
Li
,
G.
,
Xiao
,
G.
, and
Wang
,
J. Q.
,
2017
, “
Comparative Performance Investigation of Different Gas Flow Configurations for a Planar Solid Oxide Electrolyzer Cell
,”
Int. J. Hydrogen Energy
,
42
(
16
), pp.
10785
10801
.10.1016/j.ijhydene.2017.02.097
15.
Zhan
,
R. B.
,
Wang
,
Y.
,
Ni
,
M.
,
Zhang
,
G. B.
,
Du
,
Q.
, and
Jiao
,
K.
,
2020
, “
Three-Dimensional Simulation of Solid Oxide Fuel Cell With Metal Foam as Cathode Flow Distributor
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
6897
6911
.10.1016/j.ijhydene.2019.11.221
16.
Fahs
,
I. E.
,
Ghassemi
,
M.
, and
Fahs
,
A.
,
2020
, “
Numerical Study of Detecting Crack Initiation in a Planar Solid Oxide Fuel Cell
,”
Environ. Prog. Sustainable Energy
,
39
(
6
), p.
e13443
.10.1002/ep.13443
17.
He
,
A.
,
Onishi
,
J.
, and
Shikazono
,
N.
,
2020
, “
Optimization of Electrode-Electrolyte Interface Structure for Solid Oxide Fuel Cell Cathode
,”
J. Power Sources
,
449
, p.
227565
.10.1016/j.jpowsour.2019.227565
18.
Takino
,
K.
,
Tachikawa
,
Y.
,
Mori
,
K.
,
Lyth
,
S. M.
,
Shiratori
,
Y.
,
Taniguchi
,
S.
, and
Sasaki
,
K.
,
2020
, “
Simulation of SOFC Performance Using a Modified Exchange Current Density for Pre-Reformed Methane-Based Fuels
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
6912
6925
.10.1016/j.ijhydene.2019.12.089
19.
Xu
,
Q. D.
, and
Ni
,
M.
,
2021
, “
Modelling of High Temperature Direct Methanol Solid Oxide Fuel Cells
,”
Int. J. Energy Res.
,
45
(
2
), pp.
3097
3112
.10.1002/er.6003
20.
Liu
,
S. X.
,
Song
,
C.
, and
Lin
,
Z. J.
,
2008
, “
The Effects of the Interconnect Rib Contact Resistance on the Performance of Planar Solid Oxide Fuel Cell Stack and the Rib Design Optimization
,”
J. Power Sources
,
183
(
1
), pp.
214
225
.10.1016/j.jpowsour.2008.04.054
21.
Li
,
X. L.
,
Shi
,
W. Y.
, and
Han
,
M. F.
,
2018
, “
Optimization of Interconnect Flow Channels Width in a Planar Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
43
(
46
), pp.
21524
21534
.10.1016/j.ijhydene.2018.09.061
22.
Zeng
,
S. M.
,
Zhang
,
X. Q.
,
Chen
,
J. S.
,
Li
,
T. S.
, and
Andersson
,
M.
,
2018
, “
Modeling of Solid Oxide Fuel Cells With Optimized Interconnect Designs
,”
Int. J. Heat Mass Transfer
,
125
, pp.
506
514
.10.1016/j.ijheatmasstransfer.2018.04.096
23.
Moreno-Blanco
,
J.
,
Elizalde-Blancas
,
F.
,
Riesco-Avila
,
J. M.
,
Belman-Flores
,
J. M.
, and
Gallegos-Muñoz
,
A.
,
2019
, “
On the Effect of Gas Channels-Electrode Interface Area on SOFCs Performance
,”
Int. J. Hydrogen Energy
,
44
(
1
), pp.
446
456
.10.1016/j.ijhydene.2018.02.108
24.
Hwang
,
J. J.
,
Chen
,
C. K.
, and
Lai
,
D. Y.
,
2005
, “
Computational Analysis of Species Transport and Electrochemical Characteristics of a MOLB-Type SOFC
,”
J. Power Sources
,
140
(
2
), pp.
235
242
.10.1016/j.jpowsour.2004.08.028
25.
Ramírez-Minguela
,
J. J.
,
Uribe-Ramírez
,
A. R.
,
Mendoza-Miranda
,
J. M.
,
Pérez-García
,
V.
,
Rodríguez-Muñoz
,
J. L.
,
Minchaca-Mojica
,
J. I.
, and
Alfaro-Ayala
,
J. A.
,
2016
, “
Study of the Entropy Generation in a SOFC for Different Operating Conditions
,”
Int. J. Hydrogen Energy
,
41
(
21
), pp.
8978
8991
.10.1016/j.ijhydene.2016.04.027
26.
Stygar
,
M.
,
Brylewski
,
T.
, and
Rękas
,
M.
,
2012
, “
Effects of Changes in MOLB-Type SOFC Cell Geometry on Temperature Distribution and Heat Transfer Rate in Interconnects
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4421
4426
.10.1016/j.ijheatmasstransfer.2012.04.011
27.
Yang
,
Y. Z.
,
Wang
,
G. L.
,
Zhang
,
H. O.
, and
Xia
,
W. S.
,
2008
, “
Comparison of Heat and Mass Transfer Between Planar and MOLB-Type SOFCs
,”
J. Power Sources
,
177
(
2
), pp.
426
433
.10.1016/j.jpowsour.2007.11.025
28.
Ramírez-Minguela
,
J. J.
,
Rodríguez-Muñoz
,
J. L.
,
Pérez-García
,
V.
,
Mendoza-Miranda
,
J. M.
,
Muñoz-Carpio
,
V. D.
, and
Alfaro-Ayala
,
J. A.
,
2015
, “
Solid Oxide Fuel Cell Numerical Study: Modified MOLB-Type and Simple Planar Geometries With Internal Reforming
,”
Electrochim. Acta
,
159
, pp.
149
157
.10.1016/j.electacta.2015.01.113
29.
Sciacovelli
,
A.
, and
Verda
,
V.
,
2009
, “
Entropy Generation Analysis in a Monolithic-Type Solid Oxide Fuel Cell (SOFC)
,”
Energy
,
34
(
7
), pp.
850
865
.10.1016/j.energy.2009.03.007
30.
Huang
,
H. Y.
,
Han
,
Z.
,
Lu
,
S. Y.
,
Kong
,
W.
,
Wu
,
J.
, and
Wang
,
X. R.
,
2020
, “
The Analysis of Structure Parameters of MOLB Type Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
45
(
39
), pp.
20351
20359
.10.1016/j.ijhydene.2019.10.251
31.
Wang
,
Y.
,
Zhan
,
R. B.
,
Qin
,
Y. Z.
,
Zhang
,
G. B.
,
Du
,
Q.
, and
Jiao
,
K.
,
2018
, “
Three-Dimensional Modeling of Pressure Effect on Operating Characteristics and Performance of Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
43
(
43
), pp.
20059
20076
.10.1016/j.ijhydene.2018.09.025
32.
Lee
,
S.
,
Park
,
M.
,
Kim
,
H.
,
Yoon
,
K. J.
,
Son
,
J. W.
,
Lee
,
J. H.
,
Kim
,
B. K.
,
Choi
,
W.
, and
Hong
,
J.
,
2017
, “
Thermal Conditions and Heat Transfer Characteristics of High-Temperature Solid Oxide Fuel Cells Investigated by Three-Dimensional Numerical Simulations
,”
Energy
,
120
, pp.
293
305
.10.1016/j.energy.2016.11.084
33.
Khazaee
,
I.
, and
Rava
,
A.
,
2017
, “
Numerical Simulation of the Performance of Solid Oxide Fuel Cell With Different Flow Channel Geometries
,”
Energy
,
119
, pp.
235
244
.10.1016/j.energy.2016.12.074
34.
Celik
,
A. N.
,
2018
, “
Three-Dimensional Multiphysics Model of a Planar Solid Oxide Fuel Cell Using Computational Fluid Dynamics Approach
,”
Int. J. Hydrogen Energy
,
43
(
42
), pp.
19730
19748
.10.1016/j.ijhydene.2018.08.212
35.
Su
,
S. C.
,
Zhang
,
Q.
,
Gao
,
X.
,
Periasamy
,
V.
, and
Kong
,
W.
,
2016
, “
Effects of Changes in Solid Oxide Fuel Cell Electrode Thickness on Ohmic and Concentration Polarizations
,”
Int. J. Hydrogen Energy
,
41
(
36
), pp.
16181
16190
.10.1016/j.ijhydene.2016.04.221
36.
Fu
,
P.
,
Yang
,
J.
, and
Wang
,
Q. W.
,
2020
, “
Numerical Study on Mass Transfer and Electrical Performance of Anode-Supported Planar Solid Oxide Fuel Cells With Gradient Porosity Anode
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
2
), p.
022101
.10.1115/1.4045304
37.
Jeon
,
D. H.
,
2019
, “
Computational Fluid Dynamics Simulation of Anode-Supported Solid Oxide Fuel Cells With Implementing Complete Overpotential Model
,”
Energy
,
188
, p.
116050
.10.1016/j.energy.2019.116050
38.
Ramírez-Minguela
,
J. J.
,
Mendoza-Miranda
,
J. M.
,
Rodríguez-Muñoz
,
J. L.
,
Pérez-García
,
V.
,
Alfaro-Ayala
,
J. A.
, and
Uribe-Ramírez
,
A. R.
,
2018
, “
Entropy Generation Analysis of a Solid Oxide Fuel Cell by Computational Fluid Dynamics: Influence of Electrochemical Model and Its Parameters
,”
Therm. Sci.
,
22
(
1 Part B
), pp.
577
589
.10.2298/TSCI151221127R
39.
Li
,
Y. B.
,
Yan
,
H. B.
,
Zhou
,
Z. F.
, and
Wu
,
W. T.
,
2019
, “
Three‐Dimensional Nonisothermal Modeling of Solid Oxide Fuel Cell Coupling Electrochemical Kinetics and Species Transport
,”
Int. J. Energy Res.
,
43
, pp.
6907
6921
.10.1002/er.4707
You do not currently have access to this content.