Abstract

Ce-doped Ba2TiMoO6 with different Ce percentage was synthesized by solid state reaction and investigated. Electrical and thermal properties were examined by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and photothermal deflection (PTD) technique. The electrical investigation shows that the increase of Ce doping percentage favors the electrical confinement which leads to a decrease in the electrical capacitance from 2.6 nF to 1.6 nF, an increase in the grain boundaries resistance from 5.88 × 107 to 6.50 × 108 Ω, a decrease in the current density from 60 nA to 3 nA, and a decrease of thermal conductivity from 1.8 W m−1 K−1 to 0.12 W m−1 K−1. These results introduce the Ce-doped Ba2TiMoO6 perovskite as a potential candidate for a new generation of thermal barrier coatings (TBCs).

References

1.
Kobayashi
,
K. I.
,
Kimura
,
T.
,
Sawada
,
H.
,
Terakura
,
K.
, and
Tokura
,
Y.
,
1998
, “
Room-Temperature Magnetoresistance in an Oxide Material With an Ordered Double-Perovskite Structure
,”
Nature
,
395
(
6703
), pp.
677
680
.10.1038/27167
2.
Dhilip
,
M.
,
Manikandan
,
M.
,
Kumar
,
S. R.
,
Jayalakshmi
,
V.
,
Anbarasu
,
V.
, and
Kumar
,
K. S.
,
2019
, “
Synthesis of SrCoO3 Perovskite as W-Based Double Perovskite and Its Structural Properties
,”
J. Mater. Sci.: Mater. Electron.
,
30
(
4
), pp.
4270
4278
.10.1007/s10854-019-00718-1
3.
Ding
,
H.
,
Sullivan
,
N. P.
, and
Ricote
,
S.
,
2017
, “
Double Perovskite Ba2FeMoO6−δ as Fuel Electrode for Protonic-Ceramic Membranes
,”
Solid State Ionics
,
306
, pp.
97
103
.10.1016/j.ssi.2017.04.007
4.
Liu
,
X. J.
,
Huang
,
Q. J.
,
Zhang
,
S. Y.
,
Luo
,
A. H.
, and
Zhao
,
C. X.
,
2004
, “
Thermal Diffusivity of Double Perovskite Sr2MMoO6 (M = Fe, Mn, and Co) and La Doping Effects Studied by Mirage Effect
,”
J. Phys. Chem. Solids
,
65
(
7
), pp.
1247
1251
.10.1016/j.jpcs.2004.01.017
5.
Mukherjee
,
R.
,
Dutta
,
A.
, and
Sinha
,
T. P.
,
2016
, “
Dielectric Relaxation of Rare Earth Ordered Double Perovskite Oxide Ba2ErTaO6
,”
J. Electron. Mater.
,
45
(
1
), pp.
846
852
.10.1007/s11664-015-4222-6
6.
Singh
,
D. N.
,
Sinha
,
T. P.
, and
Mahato
,
D. K.
,
2017
, “
Electric Modulus, Scaling and AC Conductivity of La2CuMnO6 Double Perovskite
,”
J. Alloys Compd.
,
729
, pp.
1226
1233
.10.1016/j.jallcom.2017.09.241
7.
Li
,
E.
,
Ma
,
W.
,
Zhang
,
P.
,
Zhang
,
C.
,
Bai
,
Y.
,
Liu
,
H.
,
Yan
,
S.
,
Dong
,
H.
, and
Meng
,
X.
,
2021
, “
The Effect of Al3+ Doping on the Infrared Radiation and Thermophysical Properties of SrZrO3 Perovskites as Potential Low Thermal Infrared Material
,”
Acta Mater.
,
209
, p.
116795
.10.1016/j.actamat.2021.116795
8.
Alhokbany
,
N.
,
Almotairi
,
S.
,
Ahmed
,
J.
,
Al-Saeedi
,
S. I.
,
Ahamad
,
T.
, and
Alshehri
,
S. M.
,
2021
, “
Investigation of Structural and Electrical Properties of Synthesized Sr-Doped Lanthanum Cobaltite (La1−xSrxCoO3) Perovskite Oxide
,”
J. King Saud Univ., Sci.
,
33
(
4
), p.
101419
.10.1016/j.jksus.2021.101419
9.
Vaßen
,
R.
,
Kagawa
,
Y.
,
Subramanian
,
R.
,
Zombo
,
P.
, and
Zhu
,
D.
,
2012
, “
Testing and Evaluation of Thermal-Barrier Coatings
,”
Mater. Res. Soc. Bull.
,
37
(
10
), pp.
911
916
.10.1557/mrs.2012.235
10.
Smialek
,
J. L.
, and
Miller
,
R. A.
,
2018
, “
Revisiting the Birth of 7YSZ Thermal Barrier Coatings: Stephan Stecura
,”
Coatings
,
8
(
7
), p.
255
.10.3390/coatings8070255
11.
Liu
,
Y.
,
Cooper
,
V. R.
,
Wang
,
B.
,
Xiang
,
H.
,
Li
,
Q.
,
Gao
,
Y.
,
Yang
,
J.
,
Zhou
,
Y.
, and
Liu
,
B.
,
2019
, “
Discovery of ABO3 Perovskites as Thermal Barrier Coatings Through High-Throughput First Principles Calculations
,”
Mater. Res. Lett.
,
7
(
4
), pp.
145
151
.10.1080/21663831.2019.1566183
12.
Guo
,
L.
,
Li
,
M.
, and
Ye
,
F.
,
2016
, “
Phase Stability and Thermal Conductivity of RE2O3 (RE = La, Nd, Gd, and Yb) and Yb2O3 Co-Doped Y2O3 Stabilized ZrO2 Ceramics
,”
Ceram. Int.
,
42
(
6
), pp.
7360
7365
.10.1016/j.ceramint.2016.01.138
13.
Liu
,
L.
,
Wang
,
Y.
,
Ma
,
Z.
,
Wang
,
F.
, and
Zhu
,
M.
,
2015
, “
Preparation and Thermophysical Properties of Yb-Doped Ba2DyAlO5 Ceramics
,”
Mater. Lett.
,
144
, pp.
33
35
.10.1016/j.matlet.2015.01.003
14.
Wu
,
H.
,
Shi
,
X. L.
,
Liu
,
W. D.
,
Li
,
M.
,
Gao
,
H.
,
Zhou
,
W.
,
Shao
,
Z.
,
Wang
,
Y.
,
Liu
,
Q.
, and
Chen
,
Z. G.
,
2021
, “
Double Perovskite Pr2CoFeO6 Thermoelectric Oxide: Roles of Sr-Doping and Micro/Nanostructuring
,”
Chem. Eng. J.
,
425
, p.
130668
.10.1016/j.cej.2021.130668
15.
Sadati
,
S. E.
,
Rahbar
,
N.
,
Kargarsharifabad
,
H.
, and
Doost
,
A. K.
,
2021
, “
Low Thermal Conductivity Measurement Using Thermoelectric Technology-Mathematical Modeling and Experimental Analysis
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105534
.10.1016/j.icheatmasstransfer.2021.105534
16.
Ogawa
,
H.
,
Ohta
,
H.
, and
Waseda
,
Y.
,
1993
, “
Thermal Diffusivity Measurement of LiNbO3 Melts Doped With MgO by the Laser Flash Method
,”
J. Cryst. Growth
,
133
(
3–4
), pp.
255
260
.10.1016/0022-0248(93)90162-P
17.
Ghrib
,
T.
,
Tlili
,
B.
,
Nouveau
,
C.
,
Benlatreche
,
Y.
,
Lambertin
,
M.
,
Yacoubi
,
N.
, and
Ennasri
,
M.
,
2009
, “
Experimental Investigation of the Mechanical Micro Structural and Thermal Properties of Thin CrAIN Layers Deposited by PVD Technique for Various Aluminum Percentages
,”
Phys. Procedia
,
2
(
3
), pp.
1327
1336
.10.1016/j.phpro.2009.11.099
18.
Kumar
,
P.
,
Singh
,
N. K.
,
Singh
,
R. K.
, and
Singh
,
P.
,
2015
, “
Influence of Ni/Mo Ratio on Structural and Electrical Properties of Double Perovskite System Sr2Ni1+xMo1−xO6−δ
,”
Appl. Phys. A
,
121
(
2
), pp.
635
644
.10.1007/s00339-015-9448-x
19.
Mhareb
,
M. H. A.
,
Alajerami
,
Y. S. M.
,
Sayyed
,
M. I.
,
Dwaikat
,
N.
,
Alqahtani
,
M.
,
Alshahri
,
F.
,
Saleh
,
N.
,
Alonizan
,
N.
,
Ghrib
,
T.
, and
Al-Dhafar
,
S. I.
,
2020
, “
Radiation Shielding, Structural, Physical, and Optical Properties for a Series of Borosilicate Glass
,”
J. Non-Cryst. Solids
,
550
, p.
120360
.10.1016/j.jnoncrysol.2020.120360
20.
Alarcon-Suesca
,
C. E.
,
Opel
,
M.
,
TellezLandínez Téllez
,
D. A.
, and
Roa-Rojas
,
J.
,
2012
, “
Structural, Magnetic and Electric Behavior of the New Ba2TiMoO6 Material
,”
Phys. B
,
407
(
16
), pp.
3074
3077
.10.1016/j.physb.2011.12.028
21.
Czekaj
,
A. L.
,
Rerak
,
M.
,
Czekaj
,
D.
,
Lubina
,
M.
,
Glos
,
B. G.
, and
Bąk
,
W.
,
2016
, “
Low Temperature Broad Band Dielectric Spectroscopy of Multiferroic Bi6Fe2Ti3O18 Ceramics
,”
Arch. Metall. Mater.
,
61
(
3
), pp.
1447
1452
.10.1515/amm-2016-0237
22.
Bonaedy
,
T.
,
Koo
,
Y. S.
,
Sung
,
K. D.
,
Song
,
K. M.
,
Hur
,
N.
, and
Jung
,
J. H.
,
2008
, “
Effect of Grain Boundary on Resistive Magnetodielectric Property of Polycrystalline γ-Fe2O3
,”
Appl. Phys. A
,
93
(
2
), pp.
517
520
.10.1007/s00339-008-4795-5
23.
Asadzadeh
,
M.
,
Tajabadi
,
F.
,
Dastan
,
D.
,
Sangpour
,
P.
,
Shi
,
Z.
, and
Taghavinia
,
N.
,
2021
, “
Facile Deposition of Porous Fluorine Doped Tin Oxide by Dr. Blade Method for Capacitive Applications
,”
Ceram. Int.
,
47
(
4
), pp.
5487
5494
.10.1016/j.ceramint.2020.10.131
24.
Bharti
,
C.
,
Sen
,
A.
,
Chanda
,
S.
, and
Sinha
,
T. P.
,
2014
, “
Structural, Vibrational and Electrical Properties of Ordered Double Perovskite Oxide BaLaMnSbO6
,”
J. Alloys Compd.
,
590
, pp.
125
130
.10.1016/j.jallcom.2013.12.124
25.
Coster
,
H. G. L.
,
Chilcott
,
T. C.
, and
Coster
,
A. C. F.
,
1996
, “
Impedance Spectroscopy of Interfaces, Membranes and Ultrastructures
,”
Bioelectrochem. Bioenerg.
,
40
(
2
), pp.
79
98
.10.1016/0302-4598(96)05064-7
26.
Fletcher
,
J. G.
,
West
,
A. R.
, and
Irvine
,
J. T. S.
,
1995
, “
The AC Impedance Response of the Physical Interface Between Yttria‐Stabilized Zirconia and YBa2Cu3O7−x
,”
J. Electrochem. Soc.
,
142
(
8
), pp.
2650
2654
.10.1149/1.2050068
27.
Mandal
,
B.
, and
Mitra
,
P.
,
2020
, “
Grain Growth Correlated Complex Impedance Spectroscopy, Modulus Spectroscopy and Carrier Hopping Mechanism in MnCo2O4: Influence of Sintering Temperature
,”
Mater. Chem. Phys.
,
251
, p.
123095
.10.1016/j.matchemphys.2020.123095
28.
Medina
,
M. S.
,
Carvalho
,
S. G. M.
,
Muccillo
,
E. N. S.
, and
Muccillo
,
R.
,
2019
, “
Enhancement of the Ionic Conductivity in Electric Field-Assisted Pressureless Sintered BITIVOX Solid Electrolytes
,”
Ceramics
,
2
(
3
), pp.
502
513
.10.3390/ceramics2030038
29.
Chung
,
S. Y.
,
Kim
,
I. D.
, and
Kang
,
S. J. L.
,
2004
, “
Strong Nonlinear Current–Voltage Behaviour in Perovskite-Derivative Calcium Copper Titanate
,”
Nat. Mater.
,
3
(
11
), pp.
774
778
.10.1038/nmat1238
30.
Xue
,
Y.
,
Tian
,
J.
,
Wang
,
H.
,
Xie
,
H.
,
Zhu
,
S.
,
Zheng
,
B.
,
Gao
,
C.
, and
Liu
,
X.
,
2018
, “
Localized Incorporation of Cesium Ions to Improve Formamidinium Lead Iodide Layers in Perovskite Solar Cells
,”
RSC Adv.
,
8
(
45
), pp.
25645
25652
.10.1039/C8RA04742A
31.
Singh
,
N.
,
Parkash
,
O.
, and
Kumar
,
D.
,
2013
, “
Preparation and Characterization of Al and La Co-Doped (Ce1−xy AlxLay O2-(x+y)/2) Ceria
,”
Ionics
,
19
(
1
), pp.
165
170
.10.1007/s11581-012-0698-8
32.
Mahapatra
,
A.
,
Parikh
,
N.
,
Kumar
,
P.
,
Kumar
,
M.
,
Prochowicz
,
D.
,
Kalam
,
A.
,
Tavakoli
,
M.
, and
Yadav
,
M. P.
,
2020
, “
Changes in the Electrical Characteristics of Perovskite Solar Cells With Aging Time
,”
Molecules
,
25
(
10
), p.
2299
.10.3390/molecules25102299
33.
Jlassi
,
I.
,
Sdiri
,
N.
, and
Elhouichet
,
H.
,
2017
, “
Electrical Conductivity and Dielectric Properties of MgO Doped Lithium Phosphate Glasses
,”
J. Non-Cryst. Solids
,
466–467
, pp.
45
51
.10.1016/j.jnoncrysol.2017.03.042
34.
Bijelić
,
J.
,
Tatar
,
D.
,
Hajra
,
S.
,
Sahu
,
M.
,
Kim
,
S. J.
,
Jaglićić
,
Z.
, and
Djerdj
,
I.
,
2020
, “
Nanocrystalline Antiferromagnetic High-κ Dielectric Sr2NiMO6 (M = Te, W) With Double Perovskite Structure Type
,”
Molecules
,
25
(
17
), p.
3996
.10.3390/molecules25173996
35.
Abdallah
,
F. B.
,
Benali
,
A.
,
Triki
,
M.
,
Dhahri
,
E.
,
Graça
,
M. P. F.
, and
Valente
,
M. A.
,
2018
, “
Effect of Annealing Temperature on Structural, Morphology and Dielectric Properties of La0.75Ba0.25FeO3 Perovskite
,”
Superlattices Microstruct.
,
117
, pp.
260
270
.10.1016/j.spmi.2018.03.048
36.
Inniss
,
D.
, and
Rubenstein
,
R.
,
2017
, “
The Long March to a Silicon-Photonics Union
,”
Silicon Photonics
,
Morgan Kaufmann
, San Francisco, CA, pp.
41
64
.
37.
Inglehart
,
L. J.
,
1984
, “
Optical Beam Deflection Detection of Thermal Waves in Opaque Solids
,” Ph.D. thesis,
Wayne State University
, Detroit, MI.
38.
Saad
,
H.
,
Weiser
,
M.
,
Hossain
,
A.
, and
Ruhul Amin
,
M.
,
2019
, “
Combination of Analytical, Numerical and Experimental Approaches to Enhance Engineering Concepts in a Heat Transfer Course
,”
AIP Conf. Proc.
,
2121
, p.
150004
.10.1063/1.5115969
39.
Bazhenov
,
V. E.
,
Koltygin
,
A. V.
,
Tselovalnik
,
Y. V.
, and
Sannikov
,
A. V.
,
2017
, “
Determination of Interface Heat Transfer Coefficient Between Aluminum Casting and Graphite Mold
,”
Russ. J. Non-Ferrous Met.
,
58
(
2
), pp.
114
123
.10.3103/S1067821217020031
40.
Banan
,
M.
,
Gray
,
R. T.
, and
Wilcox
,
W. R.
,
1991
, “
An Experimental Approach to Determine the Heat Transfer Coefficient in Directional Solidification Furnaces
,”
J. Cryst. Growth
,
113
(
3–4
), pp.
557
565
.10.1016/0022-0248(91)90091-I
41.
Bennaji
,
N.
,
Mellouki
,
I.
, and
Yacoubi
,
N.
,
2014
, “
Determination of Thermal Properties of Graphite-Black-Coating by Photothermal and Electro-Pyroelectric Techniques
,”
Sens. Transducers J.
,
27
, pp.
75
81
.https://www.researchgate.net/publication/289526484
42.
Ghrib
,
T.
,
Al-Otaibi
,
A. L.
,
Almessiere
,
M. A.
,
Ashahri
,
A.
, and
Masoudi
,
I.
,
2017
, “
Structural, Optical and Thermal Properties of the Ce Doped YAG Synthesized by Solid-State Reaction Method
,”
Thermochim. Acta
,
654
, pp.
35
39
.10.1016/j.tca.2017.04.010
43.
Saturday
,
L.
,
Wilson
,
L.
,
Retterer
,
S.
,
Evans
,
N. J.
,
Briggs
,
D.
,
Rack
,
P. D.
, and
Lavrik
,
N.
,
2021
, “
Thermal Conductivity of Nano- and Micro-Crystalline Diamond Films Studied by Photothermal Excitation of Cantilever Structures
,”
Diamond Relat. Mater.
,
113
, p.
108279
.10.1016/j.diamond.2021.108279
44.
Jeon
,
P. S.
,
Kim
,
J. H.
,
Kim
,
H. J.
, and
Yoo
,
J.
,
2008
, “
Thermal Conductivity Measurement of Anisotropic Material Using Photothermal Deflection Method
,”
Thermochim. Acta
,
477
(
1–2
), pp.
32
37
.10.1016/j.tca.2008.08.004
45.
Bose
,
S.
,
2007
, “
Thermal Barrier Coatings (TBCs)
,”
High Temperature Coatings
,
Butterworth-Heinemann
, Oxford, UK, pp.
155
232
.
46.
Dai
,
H.
,
Zhong
,
X.
,
Li
,
J.
,
Meng
,
J.
, and
Cao
,
X.
,
2006
, “
Neodymium–Cerium Oxide as New Thermal Barrier Coating Material
,”
Surf. Coat. Technol.
,
201
(
6
), pp.
2527
2533
.10.1016/j.surfcoat.2006.04.016
47.
Hou
,
H.
,
Veilleux
,
J.
,
Gitzhofer
,
F.
, and
Wang
,
Q.
,
2020
, “
Vertical Grain and Columnar Structured Ba(Mg1/3Ta2/3)O3 Thermal Barrier Coating Deposited by Solution Precursor Plasma Spray
,”
Surf. Coat. Technol.
,
393
, p.
125803
.10.1016/j.surfcoat.2020.125803
48.
Matsumoto
,
M.
,
Kato
,
T.
,
Yamaguchi
,
N.
,
Yokoe
,
D.
, and
Matsubara
,
H.
,
2009
, “
Thermal Conductivity and Thermal Cycle Life of La2O3 and HfO2 Doped ZrO2–Y2O3 Coatings Produced by EB-PVD
,”
Surf. Coat. Technol.
,
203
(
19
), pp.
2835
2840
.10.1016/j.surfcoat.2009.01.033
49.
Nicholls
,
J. R.
,
Lawson
,
K. J.
,
Johnstone
,
A.
, and
Rickerby
,
D. S.
,
2002
, “
Methods to Reduce the Thermal Conductivity of EB−PVD TBCs
,”
Surf. Coat. Technol.
,
151–152
, pp.
383
391
.10.1016/S0257-8972(01)01651-6
You do not currently have access to this content.