Abstract

In this paper, the lattice Boltzmann (LB) method was used to simulate the flow and heat transfer process in porous composite phase change material (PCM) with acoustic streaming, to investigate the mechanism of heat transfer enhancement caused by acoustic streaming. The study focused on the effect of acoustic streaming at different Rayleigh number, Prandtl number, amplitude and wavelength of acoustic streaming on the flow field, temperature field, liquid fraction field, and average Nusselt number at the hot wall. The results show that acoustic streaming can enhance the fluid flow in the liquid phase region, and reduce the temperature inhomogeneity and inclination of liquid–solid interface front. The natural convection and the forced convection caused by acoustic streaming both get strengthened with the increasing of Rayleigh number, thus the influence of acoustic streaming first slightly rises and then drops. The momentum diffuses slower compared to the heat diffusion with the increasing of Prandtl number, thus the influence of acoustic streaming increases. With the amplitude of acoustic streaming increasing, the effect of acoustic streaming has a more remarkable inhibiting effect on average liquid fraction, decreasing by 1.11%, 5.09%, and 20.1% at the amplitude of acoustic streaming δρ* = 0.005, 0.01, 0.02, respectively. The average temperature and average liquid fraction show no obvious differences with the increasing of the wavelength of the acoustic streaming.

References

1.
Sarı
,
A.
, and
Karaipekli
,
A.
,
2007
, “
Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1271
1277
.10.1016/j.applthermaleng.2006.11.004
2.
Zhang
,
Z.
, and
Fang
,
X.
,
2006
, “
Study on Paraffin/Expanded Graphite Composite Phase Change Thermal Energy Storage Material
,”
Energy Convers. Manag.
,
47
(
3
), pp.
303
310
.10.1016/j.enconman.2005.03.004
3.
Xiao
,
X.
,
Zhang
,
P.
, and
Li
,
M.
,
2013
, “
Preparation and Thermal Characterization of Paraffin/Metal Foam Composite Phase Change Material
,”
Appl. Energy
,
112
, pp.
1357
1366
.10.1016/j.apenergy.2013.04.050
4.
Guo
,
C.
,
Hu
,
X.
,
Cao
,
W.
,
Yu
,
D.
, and
Tang
,
D.
,
2013
, “
Effect of Mechanical Vibration on Flow and Heat Transfer Characteristics in Rectangular Microgrooves
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
385
393
.10.1016/j.applthermaleng.2012.12.010
5.
Liu
,
W.
,
Yang
,
Z.
,
Zhang
,
B.
, and
Lv
,
P.
,
2017
, “
Experimental Study on the Effects of Mechanical Vibration on the Heat Transfer Characteristics of Tubular Laminar Flow
,”
Int. J. Heat Mass Transfer
,
115
, pp.
169
179
.10.1016/j.ijheatmasstransfer.2017.07.025
6.
Hosseinian
,
A.
,
Meghdadi Isfahani
,
A. H.
, and
Shirani
,
E.
,
2018
, “
Experimental Investigation of Surface Vibration Effects on Increasing the Stability and Heat Transfer Coeffcient of MWCNTs-Water Nanofluid in a Flexible Double Pipe Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
90
, pp.
275
285
.10.1016/j.expthermflusci.2017.09.018
7.
Legay
,
M.
,
Gondrexon
,
N.
,
Le Person
,
S.
,
Boldo
,
P.
, and
Bontemps
,
A.
,
2011
, “
Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances
,”
Int. J. Chem. Eng.
,
2011
, pp.
e670108
e670117
.10.1155/2011/670108
8.
Wong
,
S. W.
, and
Chon
,
W. Y.
,
1969
, “
Effects of Ultrasonic Vibrations on Heat Transfer to Liquids by Natural Convection and by Boiling
,”
AIChE J.
,
15
(
2
), pp.
281
288
.10.1002/aic.690150229
9.
Buliński
,
P.
,
Smolka
,
J.
,
Golak
,
S.
,
Przyłucki
,
R.
,
Palacz
,
M.
,
Siwiec
,
G.
,
Lipart
,
J.
,
Białecki
,
R.
, and
Blacha
,
L.
,
2017
, “
Numerical and Experimental Investigation of Heat Transfer Process in Electromagnetically Driven Flow Within a Vacuum Induction Furnace
,”
Appl. Therm. Eng.
,
124
, pp.
1003
1013
.10.1016/j.applthermaleng.2017.06.099
10.
Li
,
H.
,
Shi
,
S.
,
Lin
,
B.
,
Lu
,
J.
,
Lu
,
Y.
,
Ye
,
Q.
,
Wang
,
Z.
,
Hong
,
Y.
, and
Zhu
,
X.
,
2019
, “
A Fully Coupled Electromagnetic, Heat Transfer and Multiphase Porous Media Model for Microwave Heating of Coal
,”
Fuel Process. Technol.
,
189
, pp.
49
61
.10.1016/j.fuproc.2019.03.002
11.
Ju
,
Z.
,
Li
,
X.
, and
Jiang
,
R.
,
2012
, “
Numerical Simulation of the Stirring Action of Ultrasound in the Process of Semi-Continuous Casting Aluminum Alloy
,”
Spec. Cast. Nonferrous Alloys
,
32
(
11
), pp.
68
71
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZZZ201211028.htm
12.
Lebon
,
G. S. B.
,
Salloum-Abou-Jaoude
,
G.
,
Eskin
,
D.
,
Tzanakis
,
I.
,
Pericleous
,
K.
, and
Jarry
,
P.
,
2019
, “
Numerical Modelling of Acoustic Streaming During the Ultrasonic Melt Treatment of Direct-Chill (DC) Casting
,”
Ultrason. Sonochem.
,
54
, pp.
171
182
.10.1016/j.ultsonch.2019.02.002
13.
He
,
Y.
,
Liu
,
Q.
,
Li
,
Q.
, and
Tao
,
W.
,
2019
, “
Lattice Boltzmann Methods for Single-Phase and Solid-Liquid Phase-Change Heat Transfer in Porous Media: A Review
,”
Int. J. Heat Mass Transfer
,
129
, pp.
160
197
.10.1016/j.ijheatmasstransfer.2018.08.135
14.
Semma
,
E. A.
,
El Ganaoui
,
M.
, and
Bennacer
,
R.
,
2007
, “
Lattice Boltzmann Method for Melting/Solidification Problems
,”
C. R. Méc.
,
335
(
5–6
), pp.
295
303
.10.1016/j.crme.2007.05.015
15.
Jourabian
,
M.
,
Farhadi
,
M.
, and
Darzi
,
A. A. R.
,
2012
, “
Simulation of Natural Convection Melting in an Inclined Cavity Using Lattice Boltzmann Method
,”
Sci. Iran.
,
19
(
4
), pp.
1066
1073
.10.1016/j.scient.2012.06.014
16.
Li
,
Z.
,
Yang
,
M.
, and
Zhang
,
Y.
,
2015
, “
Numerical Simulation of Melting Problems Using the Lattice Boltzmann Method With the Interfacial Tracking Method
,”
Numer. Heat Transf. Part Appl.
,
68
(
11
), pp.
1175
1197
.10.1080/10407782.2015.1037126
17.
Zhu
,
W.
,
Wang
,
M.
, and
Chen
,
H.
,
2017
, “
2D and 3D Lattice Boltzmann Simulation for Natural Convection Melting
,”
Int. J. Therm. Sci.
,
117
, pp.
239
250
.10.1016/j.ijthermalsci.2017.03.025
18.
Moufekkir
,
F.
,
Moussaoui
,
M.
,
Mezrhab
,
A.
,
Fontaine
,
J.
, and
Bouzidi
,
M.
,
2013
, “
Investigation of Double Diffusive Natural Convection in Presence of Gray Gas Radiation Within a Square Cavity Using Multiple Relaxation Time Lattice Boltzmann Method
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
10
), pp. 592–598.10.1115/1.4024553
19.
Moufekkir
,
F.
,
Moussaoui
,
M. A.
,
Mezrhab
,
A.
, and
Naji
,
H.
,
2015
, “
Study of Coupled Double Diffusive Convection–Radiation in a Tilted Cavity Via a Hybrid Multi-Relaxation Time-Lattice Boltzmann-Finite Difference and Discrete Ordinate Methods
,”
Heat Mass Transf
er,
51
(
4
), pp.
567
586
.10.1007/s00231-014-1423-0
20.
Li
,
X.
,
Ma
,
T.
,
Liu
,
J.
,
Zhang
,
H.
, and
Wang
,
Q.
,
2018
, “
Pore-Scale Investigation of Gravity Effects on Phase Change Heat Transfer Characteristics Using Lattice Boltzmann Method
,”
Appl. Energy
,
222
, pp.
92
103
.10.1016/j.apenergy.2018.03.184
21.
Tian
,
W.
,
2019
, “
Lattice Boltzmann Simulation of Flow and Heat Transfer in Porous Media
,”
Adv. Energy Power Eng.
,
7
(
2
), pp.
23
31
.10.12677/AEPE.2019.72003
22.
Haydock
,
D.
, and
Yeomans
,
J. M.
,
2003
, “
Lattice Boltzmann Simulations of Attenuation-Driven Acoustic Streaming
,”
J. Phys. Math. Gen.
,
36
(
20
), pp.
5683
5694
.10.1088/0305-4470/36/20/322
23.
Rafat
,
Y.
,
Habibi
,
K.
, and
Mongeau
,
L.
,
2013
, “
Direct Numerical Simulations of Acoustic Streaming in Standing Wave Tubes Using the Lattice Boltzmann Method
,”
J. Acoust. Soc. Am.
,
133
(
5
), pp.
3238
3238
.10.1121/1.4805174
24.
Meng
,
F.
,
Wang
,
M.
, and
Li
,
Z.
,
2008
, “
Lattice Boltzmann Simulations of Conjugate Heat Transfer in High-Frequency Oscillating Flows
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1203
1210
.10.1016/j.ijheatfluidflow.2008.03.001
25.
Ma
,
X.
,
Huang
,
B.
,
Wang
,
G.
,
Fu
,
X.
, and
Qiu
,
S.
,
2017
, “
Numerical Simulation of the Red Blood Cell Aggregation and Deformation Behaviors in Ultrasonic Field
,”
Ultrason. Sonochem.
,
38
, pp.
604
613
.10.1016/j.ultsonch.2016.08.021
26.
Li
,
S.
,
2015
,
Acoustic Propagation in Porous Media at Pore Scale
,
Dalian University of Technology
, Dalian, China.
27.
Wang
,
H.
,
Li
,
X.
,
Li
,
Y.
, and
Geng
,
X.
,
2017
, “
Simulation of Phase Separation With Large Component Ratio for Oil-in-Water Emulsion in Ultrasound Field
,”
Ultrason. Sonochem.
,
36
, pp.
101
111
.10.1016/j.ultsonch.2016.11.012
28.
Yan
,
Z.
,
Yu
,
Z. (J. ).
,
Yang
,
T.
,
Li
,
S.
, and
Zhang
,
G.
,
2019
, “
Impact of Ultrasound on the Melting Process and Heat Transfer of Phase Change Material
,”
Energy Procedia
,
158
, pp.
5014
5019
.10.1016/j.egypro.2019.01.663
29.
Moufekkir
,
F.
,
Moussaoui
,
M. A.
,
Mezrhab
,
A.
,
Bouzidi
,
M.
, and
Lemonnier
,
D.
,
2012
, “
Combined Double-Diffusive Convection and Radiation in a Square Enclosure Filled With Semitransparent Fluid
,”
Comput. Fluids
,
69
, pp.
172
178
.10.1016/j.compfluid.2012.07.030
30.
Moufekkir
,
F.
,
Moussaoui
,
M. A.
,
Mezrhab
,
A.
,
Naji
,
H.
, and
Bouzidi
,
M.
,
2012
, “
Numerical Study of Double Diffusive Convection in Presence of Radiating Gas in a Square Cavity
,”
Fluid Dyn. Mater. Process.
,
8
(
2
), pp.
129
153
.
31.
Moufekkir
,
F.
,
Moussaoui
,
M.
,
Mezrhab
,
A.
,
Bouzidi
,
M.
, and
Laraqi
,
N.
,
2013
, “
Study of Double-Diffusive Natural Convection and Radiation in an Inclined Cavity Using Lattice Boltzmann Method
,”
Int. J. Therm. Sci.
,
63
, pp.
65
86
.10.1016/j.ijthermalsci.2012.07.015
32.
He
,
X.
, and
Luo
,
L.
,
1997
, “
Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
56
(
6
), pp.
6811
6817
.10.1103/PhysRevE.56.6811
33.
Mohammad
,
A. A.
,
2011
,
Lattice Boltzmann Method: Fundamentals and Engineering Applications With Computer Codes
,
Springer Science & Business Media
, London, UK.
34.
Guo
,
Z.
,
2009
,
Theory and Applications of Lattice Boltzmann Method
,
Science Press
,
Beijing, China
.
35.
Wang
,
M.
,
Wang
,
J.
,
Pan
,
N.
, and
Chen
,
S.
,
2007
, “
Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media
,”
Phys. Rev. E
,
75
(
3
), p.
036702
.10.1103/PhysRevE.75.036702
36.
Mencinger
,
J.
,
2004
, “
Numerical Simulation of Melting in Two-Dimensional Cavity Using Adaptive Grid
,”
J. Comput. Phys.
,
198
(
1
), pp.
243
264
.10.1016/j.jcp.2004.01.006
37.
Yoshida
,
H.
,
Kobayashi
,
T.
,
Hayashi
,
H.
,
Kinjo
,
T.
,
Washizu
,
H.
, and
Fukuzawa
,
K.
,
2014
, “
Boundary Condition at a Two-Phase Interface in the Lattice Boltzmann Method for the Convection-Diffusion Equation
,”
Phys. Rev. E
,
90
(
1
), p.
013303
.10.1103/PhysRevE.90.013303
You do not currently have access to this content.