Abstract

Many previous studies used the performance factors for the evaluation of heat transfer enhancement of nanofluids under the identical pumping power. The validity of the performance factors was not examined yet. The validity of the performance factors used in previous studies examined considered only flows in a circular tube based on the empirical correlations and experimental data. It was found that the performance factors used in the previous studies are not valid for the evaluation of heat transfer enhancement of nanofluids. Furthermore, this paper shows that the direct comparison of heat transfer rates without the assumptions of equal surface area and the equal temperature difference is suitable for the evaluation of heat transfer enhancement of single-phase fluids.

References

1.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1647
1658
.10.1016/0017-9310(72)90095-6
2.
Gao
,
X.
, and
Sunden
,
B.
,
2001
, “
Heat Transfer and Pressure Drop Measurements in Rib-Roughened Rectangular Ducts
,”
Exp. Therm. Fluid Sci.
,
24
(
1–2
), pp.
25
34
.10.1016/S0894-1777(00)00054-6
3.
Wang
,
L.
, and
Sunden
,
B.
,
2002
, “
Performance Comparison of Some Tube Inserts
,”
Int. Commun. Heat Mass Transfer
,
29
(
1
), pp.
45
56
.10.1016/S0735-1933(01)00323-2
4.
Wang
,
L.
, and
Sunden
,
B.
,
2007
, “
Experimental Investigation of Local Heat Transfer in a Square Duct With Various-Shaped Ribs
,”
Heat Mass Transfer
,
43
(
8
), pp.
759
766
.10.1007/s00231-006-0190-y
5.
Aharwal
,
K. R.
,
Gandhi
,
B. K.
, and
Saini
,
J. S.
,
2009
, “
Heat Transfer and Friction Characteristics of Solar Air Heater Ducts Having Integral Inclined Discrete Ribs on Absorber Plate
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5970
5977
.10.1016/j.ijheatmasstransfer.2009.05.032
6.
Karwa
,
R.
,
Sharma
,
C.
, and
Karwa
,
N.
,
2013
, “
Performance Evaluation Criterion at Equal Pumping Power for Enhanced Performance Heat Transfer Surfaces
,”
J. Sol. Energy
,
2013
, pp.
1
9
.10.1155/2013/370823
7.
Asako
,
Y.
, and
Faghri
,
M.
,
1987
, “
Finite Volume Solutions for Laminar Flow and Heat Transfer in a Corrugated Duct
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
3
), pp.
627
634
.10.1115/1.3248134
8.
Gu
,
H.
,
Chen
,
Y.
,
Wu
,
J.
, and
Sunden
,
B.
,
2020
, “
Performance Investigation on Twisted Elliptical Tube Heat Exchangers With Coupling vortex Square Tube Layout
,”
Int. J. Heat Mass Transfer
,
151
, p.
119473
.10.1016/j.ijheatmasstransfer.2020.119473
9.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
,
Hishinuma
,
N.
, and
Ebata
,
Y.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of γ-Al2O3, SiO2 and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.10.2963/jjtp.7.227
10.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Proceedings of the ASME Fluids Engineering Division ASME 1995, FED-Vol. 234, 1995 IMECE, FED231, pp. 99–105.
11.
Sarafraz
,
M. M.
,
Nikkhah
,
V.
,
Nakhjavani
,
M.
, and
Arya
,
A.
,
2018
, “
Thermal Performance of a Heat Sink Microchannel Working With Biologically Produced Silver-Water Nanofluid: Experimental Assessment
,”
Exp. Therm. Fluid Sci.
,
91
, pp.
509
519
.10.1016/j.expthermflusci.2017.11.007
12.
Suresh
,
S.
,
Chandrasekar
,
M.
, and
Sekhar
,
S. C.
,
2011
, “
Experimental Studies on Heat Transfer and Friction Factor Characteristics of CuO/Water Nanofluid Under Turbulent Flow in a Helically Dimpled Tube
,”
Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
542
549
.10.1016/j.expthermflusci.2010.12.008
13.
Wongcharee
,
K.
, and
Eiamsa-Ard
,
S.
,
2011
, “
Enhancement of Heat Transfer Using CuO/Water Nanofluid and Twisted Tape With Alternate Axis
,”
Int. Commun. Heat Mass Transfer
,
38
(
6
), pp.
742
748
.10.1016/j.icheatmasstransfer.2011.03.011
14.
Arani
,
A. A. A.
, and
Amani
,
J.
,
2013
, “
Experimental Investigation of Diameter Effect on Heat Transfer Performance and Pressure Drop of TiO2–Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
520
533
.10.1016/j.expthermflusci.2012.08.014
15.
Pérez-Tavernier
,
J.
,
Vallejo
,
J. P.
,
Cabaleiro
,
D.
,
Fernández-Seara
,
J.
, and
Lugo
,
L.
,
2019
, “
Heat Transfer Performance of a Nano-Enhanced Propylene Glycol:Water Mixture
,”
Int. J. Therm. Sci.
,
139
, pp.
413
423
.10.1016/j.ijthermalsci.2019.02.012
16.
Kahani
,
M.
,
Zeinali Heris
,
S.
, and
Mousavi
,
S. M.
,
2013
, “
Comparative Study Between Metal Oxide Nanopowders on Thermal Characteristics of Nanofluid Flow Through Helical Coils
,”
Powder Technol.
,
246
, pp.
82
92
.10.1016/j.powtec.2013.05.010
17.
Liu
,
F.
,
Cai
,
Y.
,
Wang
,
L.
, and
Zhao
,
J.
,
2018
, “
Effects of Nanoparticle Shapes on Laminar Forced Convective Heat Transfer in Curved Ducts Using Two-Phase Model
,”
Int. J. Heat Mass Transfer
,
116
, pp.
292
305
.10.1016/j.ijheatmasstransfer.2017.08.097
18.
Liu
,
F.
,
Sun
,
H.
,
Zhang
,
D.
,
Chen
,
Q.
,
Zhao
,
J.
, and
Wang
,
L.
,
2020
, “
Optimization of Laminar Convective Heat Transfer of Oil-in-Water Nanoemulsion Fluids in a Toroidal Duct
,”
Int. J. Heat Mass Transfer
,
150
, p.
119332
.10.1016/j.ijheatmasstransfer.2020.119332
19.
Mohammed
,
H. A.
,
Gunnasegaran
,
P.
, and
Shuaib
,
N. H.
,
2010
, “
Heat Transfer in Rectangular Microchannels Heat Sink Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
10
), pp.
1496
1503
.10.1016/j.icheatmasstransfer.2010.08.020
20.
Hung
,
T.
, and
Yan
,
W.
,
2012
, “
Enhancement of Thermal Performance in Double-Layered Microchannel Heat Sink With Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3225
3238
.10.1016/j.ijheatmasstransfer.2012.02.057
21.
Ali
,
H. M.
, and
Arshad
,
W.
,
2017
, “
Effect of Channel Angle of Pin-Fin Heat Sink on Heat Transfer Performance Using Water Based Graphene Nanoplatelets Nanofluids
,”
Int. J. Heat Mass Transfer
,
106
, pp.
465
472
.10.1016/j.ijheatmasstransfer.2016.08.061
22.
Hussien
,
A. A.
,
Abdullah
,
M. Z.
,
Yusop
,
N. M.
,
Al-Nimr
,
M. A.
,
Atieh
,
M. A.
, and
Mehrali
,
M.
,
2017
, “
Experiment on Forced Convective Heat Transfer Enhancement Using MWCNTs/GNPs Hybrid Nanofluid and Mini-Tube
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1121
1131
.10.1016/j.ijheatmasstransfer.2017.08.120
23.
Ambreen
,
T.
,
Saleem
,
A.
, and
Park
,
C. W.
,
2019
, “
Numerical Analysis of the Heat Transfer and Fluid Flow Characteristics of a Nanofluid-Cooled Micropin-Fin Heat Sink Using the Eulerian-Lagrangian Approach
,”
Powder Technol.
,
345
, pp.
509
520
.10.1016/j.powtec.2019.01.042
24.
Kumar
,
V.
, and
Sarkar
,
J.
,
2018
, “
Two-Phase Numerical Simulation of Hybrid Nanofluid Heat Transfer in Minichannel Heat Sink and Experimental Validation
,”
Int. Commun. Heat Mass Transfer
,
91
, pp.
239
247
.10.1016/j.icheatmasstransfer.2017.12.019
25.
Zakaria
,
I.
,
Mohamed
,
W. A. N. W.
,
Bin Mama
,
A. M. I.
,
Saidur
,
R.
,
Azmi
,
W. H.
,
Mamat
,
R.
, and
Talib
,
S. F. A.
,
2015
, “
Experimental Investigation of Al2O3 - Water Ethylene Glycol Mixture Nanofluid Thermal Behaviour in a Single Cooling Plate for PEM Fuel Cell Application
,”
Energy Procedia
,
79
, pp.
252
258
.10.1016/j.egypro.2015.11.474
26.
Hosseinirad
,
E.
, and
Hormozi
,
F.
,
2017
, “
New Correlations to Predict the Thermal and Hydraulic Performance of Different Longitudinal Pin Fins as Vortex Generator in Miniature Channel: Utilizing MWCNT-Water and Al2O3-Water Nanofluids
,”
Appl. Therm. Eng.
,
118
, pp.
199
213
.10.1016/j.applthermaleng.2017.02.105
27.
Shahsavar
,
A.
,
Moradi
,
M.
, and
Bahiraei
,
M.
,
2018
, “
Heat Transfer and Entropy Generation Optimization for Flow of a non-Newtonian Hybrid Nanofluid Containing Coated CNT/Fe3O4 Nanoparticles in a Concentric Annulus
,”
J. Taiwan Inst. Chem. Eng.
,
84
, pp.
28
40
.10.1016/j.jtice.2017.12.029
28.
Zewede
,
F.
,
Argaw
,
H.
,
Tran
,
H. T.
, and
Xu
,
J.
,
2017
, “
Convective Heat Transfer of Ethanol/Polyalphaolefin Nanoemulsion Inside Circular Minichannel Heat Exchanger
,”
ASME
Paper No. HT2017-4808.10.1115/HT2017-4808
29.
Ahmadi
,
A. A.
,
Khodabandeh
,
E.
,
Moghadasi
,
H.
,
Malekian
,
N.
,
Akbari
,
O. A.
, and
Bahiraei
,
M.
,
2018
, “
Numerical Study of Flow and Heat Transfer of Water-Al2O3 Nanofluid Inside a Channel With an Inner Cylinder Using Eulerian–Lagrangian Approach
,”
J. Therm. Anal. Calorim.
,
132
(
1
), pp.
651
–6
65
.10.1007/s10973-017-6798-y
30.
Akbari
,
E.
,
Gheitaghy
,
A. M.
,
Saffari
,
H.
, and
Hosseinalipour
,
S. M.
,
2017
, “
Effect of Silver Nanoparticle Deposition in Re-Entrant Inclined Minichannel on Bubble Dynamics for Pool Boiling Enhancement
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
390
401
.10.1016/j.expthermflusci.2016.11.037
31.
Dominic
,
A.
,
Sarangan
,
J.
,
Suresh
,
S.
, and
Devahdhanush
,
V. S.
,
2017
, “
An Experimental Study of Heat Transfer and Pressure Drop Characteristics of Divergent Wavy Minichannels Using Nanofluids
,”
Heat Mass Transfer
,
53
(
3
), pp.
959
71
.10.1007/s00231-016-1865-7
32.
Zhang
,
J.
,
Diao
,
Y.
,
Zhao
,
Y.
, and
Zhang
,
Y.
,
2017
, “
An Experimental Investigation of Heat Transfer Enhancement in Minichannel: Combination of Nanofluid and Micro Fin Structure Techniques
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
21
32
.10.1016/j.expthermflusci.2016.10.001
33.
Bahoosh
,
R.
, and
Falahat
,
A.
,
2021
, “
Heat Transfer of Nanofluid Through Helical Minichannels With Secondary Branches
,”
Heat Mass Transfer
,
57
(
4
), pp.
703
714
.10.1007/s00231-020-02985-9
34.
Snoussi
,
L.
,
Ouerfelli
,
N.
,
Sharma
,
K. V.
,
Vrinceanu
,
N.
,
Chamkha
,
A. J.
, and
Guizani
,
A.
,
2018
, “
Numerical Simulation of Nanofluids for Improved Cooling Efficiency in a 3D Copper Microchannel Heat Sink (MCHS)
,”
Phys. Chem. Liq.
,
56
(
3
), pp.
311
331
.10.1080/00319104.2017.1336237
35.
Al-Waeli
,
A. H. A.
,
Chaichan
,
M. T.
,
Kazem
,
H. A.
, and
Sopian
,
K.
,
2017
, “
Comparative Study to Use Nano-(Al2O3, CuO, and SiC) With Water to Enhance Photovoltaic Thermal PV/T Collectors
,”
Energy Convers. Manage.
,
148
, pp.
963
973
.10.1016/j.enconman.2017.06.072
36.
Katayama
,
K.
ed.,
1986
,
JSME Data Book; Heat Transfer
, 4th ed.,
Maruzen
,
Tokyo
.
37.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
2
), pp.
280
289
.10.1115/1.2825978
38.
Maïga
,
S. E. B.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
,
2005
, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
530
546
.10.1016/j.ijheatfluidflow.2005.02.004
39.
Abdul Hamid
,
K.
,
Azmi
,
W. H.
,
Mamat
,
R.
, and
Sharma
,
K. V.
,
2019
, “
Heat Transfer Performance of TiO2–SiO2 Nanofluids in a Tube With Wire Coil Inserts
,”
Appl. Therm. Eng.
,
152
, pp.
275
286
.10.1016/j.applthermaleng.2019.02.083
40.
Saffarian
,
M. R.
,
Moravej
,
M.
, and
Doranehgard
,
M. H.
,
2020
, “
Heat Transfer Enhancement in a Flat Plate Solar Collector With Different Flow Path Shapes Using Nanofluid
,”
Renewable Energy
,
146
, pp.
2316
2329
.10.1016/j.renene.2019.08.081
41.
Selimefendigil
,
F.
,
Öztop
,
H. F.
, and
Özgul
,
R.
,
2019
, “
Turbulent Forced Convection of Nanofluid in an Elliptic Cross-Sectional Pipe
,”
Int. Commun. Heat Mass Transfer
,
109
, p.
104384
.10.1016/j.icheatmasstransfer.2019.104384
You do not currently have access to this content.