Abstract

Different designs of novel coolant (i.e., water) circuits have been proposed using a well-established constructal law to cool a square substrate made up of aluminum oxide and subjected to a uniform wall heat flux (i.e., q=200 W/m2) at its top. Five different flow-path topologies: case-1 (umbrella-shaped), case-2 (dumbbell-shaped), case-3 (hexagonal-shaped), case-4 (down-arrow-shaped), and case-5 (up-arrow-shaped) are evolved from a single pipe embedded in the heated substrate. The best cooling pathway has been anticipated by comparing the thermo-fluid characteristics of all the designs. A numerical route, via ansys R 16, has been implemented to solve the transport equations for continuity, momentum, and energy along with relevant boundary conditions. To access a better design, the nondimensional temperature and pressure drop for these cases have been quantified and compared, by varying the length and Reynolds number in the range of 2Lc/L3 and 100Re2000, respectively. We observe a decrease in the temperature and an increase in the pressure drop with Reynolds number for all the considered pathways. When Re500, a rapid fall in the nondimensional temperature has been noticed; and thereafter, it looks like a plateau for all cases. For case-4, a minimum temperature is obtained at the nondimensional pipe length of 2.5. At Lc/L2.5, we observe that the case-4 provides better cooling to the substrate among all other designs. Also, the pressure drop for case-4 is not too high as compared to other designs.

References

1.
Bejan
,
A.
,
2016
,
The Physics of Life: The Evolution of Everything
,
St. Martin's Press
,
New York
.
2.
Bejan
,
A.
,
2017
, “
Evolution in Thermodynamics
,”
Appl. Phys. Rev.
,
4
(
1
), p.
011305
.10.1063/1.4978611
3.
Reis
,
A. H.
,
Miguel
,
A. F.
, and
Aydin
,
M.
,
2004
, “
Constructal Theory of Flow Architecture of the Lungs
,”
Med. Phys.
,
31
(
5
), pp.
1135
1140
.10.1118/1.1705443
4.
Kasimova
,
R. G.
,
Obnosov
,
Y. V.
,
Baksht
,
F. B.
, and
Kacimov
,
A. R.
,
2013
, “
Optimal Shape of Anthill Dome: Bejan's Constructal Law Revisited
,”
Ecol. Modell.
,
250
, pp.
384
390
.10.1016/j.ecolmodel.2012.11.021
5.
Bejan
,
A.
, and
Marden
,
J. H.
,
2006
, “
Unifying Constructal Theory for Scale Effects in Running, Swimming and Flying
,”
J. Exp. Biol.
,
209
(
2
), pp.
238
248
.10.1242/jeb.01974
6.
Miguel
,
A. F.
,
2006
, “
Constructal Pattern Formation in Stony Corals, Bacterial Colonies and Plant Roots Under Different Hydrodynamics Conditions
,”
J. Theor. Biol.
,
242
(
4
), pp.
954
961
.10.1016/j.jtbi.2006.05.010
7.
Wang
,
L.
,
2011
, “
Universality of Design and Its Evolution
,”
Phys. Life Rev.
,
8
(
3
), pp.
257
258
.10.1016/j.plrev.2011.08.003
8.
Reis
,
A. H.
,
2011
, “
Design in Nature, and the Laws of Physics
,”
Phys. Life Rev.
,
8
(
3
), pp.
255
256
.10.1016/j.plrev.2011.07.001
9.
Bejan
,
A.
,
2016
, “
Rolling Stones and Turbulent Eddies: Why the Bigger Live Longer and Travel Farther
,”
Sci. Rep.
,
6
(
1
), pp.
1
4
.10.1038/srep21445
10.
Bejan
,
A.
,
2012
, “
Why the Bigger Live Longer and Travel Farther: Animals, Vehicles, Rivers and the Winds
,”
Sci. Rep.
,
2
(
1
), pp.
1
5
.10.1038/srep00594
11.
Charles
,
J. D.
, and
Bejan
,
A.
,
2009
, “
The Evolution of Speed, Size and Shape in Modern Athletics
,”
J. Exp. Biol.
,
212
(
15
), pp.
2419
2425
.10.1242/jeb.031161
12.
Bejan
,
A.
,
2015
, “
Constructal Law: Optimization as Design Evolution
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
6
), pp.
61003
61010
.10.1115/1.4029850
13.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conductive Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
816
.10.1016/0017-9310(96)00175-5
14.
Bejan
,
A.
,
Ziaei
,
S.
, and
Lorente
,
S.
,
2014
, “
Evolution: Why All Plumes and Jets Evolve to Round Cross Sections
,”
Sci. Rep.
,
4
(
4730
), pp.
1
5
.10.1038/srep04730
15.
Bejan
,
A.
, and
Lorente
,
S.
,
2012
, “
The Physics of Spreading Ideas
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
802
807
.10.1016/j.ijheatmasstransfer.2011.10.029
16.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
New York
.
17.
Lorenzini
,
G.
,
Biserni
,
C.
, and
Rocha
,
L. A. O.
,
2011
, “
Geometrical Optimization of Isothermal Cavities According to Bejan's Theory
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3868
3873
.10.1016/j.ijheatmasstransfer.2011.04.042
18.
Lorenzini
,
G.
,
Biserni
,
C.
,
Garcia
,
F. L.
, and
Rocha
,
L. A. O.
,
2012
, “
Geometrical Optimization of a Convective T-Shaped Cavity on the Basis of Constructal Theory
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6951
6958
.10.1016/j.ijheatmasstransfer.2012.07.009
19.
Bejan
,
A.
, and
Almogbel
,
M.
,
2000
, “
Constructal T-Shaped Fins
,”
Int. J. Heat Mass Transfer
,
43
(
12
), pp.
2101
2115
.10.1016/S0017-9310(99)00283-5
20.
Biserni
,
C.
,
Dalpiaz
,
F. L.
,
Fagundes
,
T. M.
, and
Rocha
,
L. A. O.
,
2017
, “
Constructal Design of T-Shaped Morphing Fins Coupled With a Trapezoidal Basement: A Numerical Investigation by Means of Exhaustive Search and Genetic Algorithm
,”
Int. J. Heat Mass Transfer
,
109
, pp.
73
81
.10.1016/j.ijheatmasstransfer.2017.01.033
21.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2009
, “
Constructal Design of T–Y Assembly of Fins for an Optimized Heat Removal
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1458
1463
.10.1016/j.ijheatmasstransfer.2008.09.007
22.
Lorenzini
,
G.
,
Biserni
,
C.
, and
Rocha
,
L. A. O.
,
2013
, “
Constructal Design of X-Shaped Conductive Pathways for Cooling a Heat-Generating Body
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
513
520
.10.1016/j.ijheatmasstransfer.2012.11.040
23.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2006
, “
Constructal Design of Y-Shaped Assembly of Fins
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4552
4557
.10.1016/j.ijheatmasstransfer.2006.05.019
24.
Lorenzini
,
G.
,
Barreto
,
E. X.
,
Beckel
,
C. C.
,
Schneider
,
P. S.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2016
, “
Constructal Design of I-Shaped High Conductive Pathway for Cooling a Heat-Generating Medium Considering the Thermal Contact Resistance
,”
Int. J. Heat Mass Transfer
,
93
, pp.
770
777
.10.1016/j.ijheatmasstransfer.2015.10.015
25.
Biserni
,
C.
,
Rocha
,
L. A. O.
,
Stanescu
,
G.
, and
Lorenzini
,
E.
,
2007
, “
Constructal H-Shaped Cavities According to Bejan's Theory
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2132
2138
.10.1016/j.ijheatmasstransfer.2006.11.006
26.
Chen
,
L.
,
Xiao
,
Q.
,
Xie
,
Z.
, and
Sun
,
F.
,
2013
, “
Constructal Entrancy Dissipation Rate Minimization for Tree Shaped Assembly Fins
,”
Int. J. Heat Mass Transfer
,
67
, pp.
506
513
.10.1016/j.ijheatmasstransfer.2013.08.073
27.
Wechsatol
,
W.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2006
, “
Tree-Shaped Flow Structures With Local Junction Losses
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2957
2964
.10.1016/j.ijheatmasstransfer.2006.01.047
28.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2009
, “
Tree-Shaped Vascular Wall Designs for Localized Intense Cooling
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4535
4544
.10.1016/j.ijheatmasstransfer.2009.03.003
29.
Alalaimi
,
M.
,
Lorente
,
S.
,
Wechsatol
,
W.
, and
Bejan
,
A.
,
2015
, “
The Robustness of the Permeability of Constructal Tree-Shaped Fissures
,”
Int. J. Heat Mass Transfer
,
90
, pp.
259
265
.10.1016/j.ijheatmasstransfer.2015.06.042
30.
Olakoyejo
,
O. T.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2012
, “
Mathematical Optimisation of Laminar Forced Convection Heat Transfer Through a Vascularised Solid With Square Channels
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2402
2411
.10.1016/j.ijheatmasstransfer.2011.12.036
31.
Wang
,
L.
,
Wu
,
W.
, and
Li
,
X.
,
2013
, “
Numerical and Experimental Investigation of Mixing Characteristics in the Constructal Tree-Shaped Microchannel
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1014
1023
.10.1016/j.ijheatmasstransfer.2013.08.077
32.
Yang
,
J.
,
Oh
,
S.
, and
Liu
,
W.
,
2014
, “
Optimization of Shell-and-Tube Heat Exchangers Using a General Design Approach Motivated by Constructal Theory
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1144
1154
.10.1016/j.ijheatmasstransfer.2014.06.046
33.
Bejan
,
A.
,
Lorente
,
S.
,
Yilbas
,
B. S.
, and
Sahin
,
A. Z.
,
2011
, “
The Effect of Size on Efficiency: Power Plants and Vascular Designs
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1475
1481
.10.1016/j.ijheatmasstransfer.2010.11.045
34.
Bello-Ochende
,
T.
,
Olakoyejo
,
O. T.
,
Meyer
,
J. P.
,
Bejan
,
A.
, and
Lorente
,
S.
,
2013
, “
Constructal Flow Orientation in Conjugate Cooling Channels With Internal Heat Generation
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
241
249
.10.1016/j.ijheatmasstransfer.2012.10.021
35.
Vargas
,
J. V. C.
,
Ordonez
,
J. C.
, and
Bejan
,
A.
,
2005
, “
Constructal PEM Fuel Cell Stack Design
,”
Int. J. Heat Mass Transfer
,
48
(
21–22
), pp.
4410
4427
.10.1016/j.ijheatmasstransfer.2005.05.009
36.
Vargas
,
J. V. C.
,
Ordonez
,
J. C.
, and
Bejan
,
A.
,
2004
, “
Constructal Flow Structure for a PEM Fuel Cell
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4177
4193
.10.1016/j.ijheatmasstransfer.2004.05.004
37.
Ziaei
,
S.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2016
, “
Constructal Design for Convection Melting of a Phase Change Body
,”
Int. J. Heat Mass Transfer
,
99
, pp.
762
769
.10.1016/j.ijheatmasstransfer.2016.04.022
38.
Feng
,
H.
,
Chen
,
L.
,
Xie
,
Z.
, and
Sun
,
F.
,
2015
, “
Constructal Entransy Dissipation Rate Minimization for Solid–Gas Reactors With Heat and Mass Transfer in a Disc-Shaped Body
,”
Int. J. Heat Mass Transfer
,
89
, pp.
24
32
.10.1016/j.ijheatmasstransfer.2015.05.032
39.
Koonsrisuk
,
A.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2010
, “
Constructal Solar Chimney Configuration
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
327
333
.10.1016/j.ijheatmasstransfer.2009.09.026
40.
Hazarika
,
S. A.
,
Bhanja
,
D.
, and
Nath
,
S.
,
2020
, “
Fork-Shaped Constructal Fin Array Design a Better Alternative for Heat and Mass Transfer Augmentation Under Dry, Partially Wet and Fully Wet Conditions
,”
Int. J. Sci.
,
152
, p.
106329
.10.1016/j.ijthermalsci.2020.106329
41.
Feng
,
H.
,
Xie
,
Z.
,
Chen
,
L.
,
Wu
,
Z.
, and
Xia
,
S.
,
2020
, “
Constructal Design for Supercharged Boiler Superheater
,”
Energy
,
191
, p.
116484
.10.1016/j.energy.2019.116484
42.
Wu
,
Z.
,
Feng
,
H.
,
Chen
,
L.
,
Tang
,
W.
,
Shi
,
J.
, and
Ge
,
Y.
,
2020
, “
Constructal Thermodynamic Optimization for Ocean Thermal Energy Conversion System With Dual-Pressure Organic Rankine Cycle
,”
Energy Convers. Manage.
,
210
, p.
112727
.10.1016/j.enconman.2020.112727
43.
Kobayashi
,
H.
,
Lorente
,
S.
,
Anderson
,
R.
, and
Bejan
,
A.
,
2012
, “
Freely Morphing Tree Structures in a Conducting Body
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4744
4753
.10.1016/j.ijheatmasstransfer.2012.04.038
44.
Almerbati
,
A.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2018
, “
The Evolutionary Design of Cooling a Plate With One Stream
,”
Int. J. Heat Mass Transfer
,
116
, pp.
9
15
.10.1016/j.ijheatmasstransfer.2017.08.122
45.
Samal
,
B.
,
Barik
,
A. K.
, and
Awad
,
M. M.
,
2019
, “
Thermo-Fluid and Entropy Generation Analysis of Newly Designed Loops for Constructal Cooling of a Square Plate
,”
Appl. Therm. Eng.
,
156
, pp.
250
262
.10.1016/j.applthermaleng.2019.04.048
46.
Barik
,
A. K.
,
Rout
,
S.
, and
Patro
,
P.
,
2020
, “
Evolution of Designs for Constructal Cooling of a Square Plate Using Water, Inonic Liquid and Nano-Enhanced Ionic Liquid
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021020
.10.1115/1.4045884
47.
Mosa
,
M.
,
Labat
,
M.
, and
Lorente
,
S.
,
2019
, “
Constructal Design of Flow Channels for Radiant Cooling Panels
,”
Int. J. Therm. Sci.
,
145
, p.
106052
.10.1016/j.ijthermalsci.2019.106052
48.
Mosa
,
M.
,
Labat
,
M.
, and
Lorente
,
S.
,
2019
, “
Role of Flow Architectures on the Design of Radiant Cooling Panels, A Constructal Approach
,”
Appl. Therm. Eng.
,
150
, pp.
1345
1352
.10.1016/j.applthermaleng.2018.12.107
49.
Labat
,
M.
,
Lorente
,
S.
, and
Mosa
,
M.
,
2020
, “
Influence of the Arrangement of Multiple Radiant Ceiling Panels on the Radiant Temperature Field
,”
Int. J. Therm. Sci.
,
149
, p.
106184
.10.1016/j.ijthermalsci.2019.106184
50.
Li
,
B.
,
Hong
,
J.
, and
Ge
,
L.
,
2017
, “
Constructal Design of Internal Cooling Geometries in Heat Conduction System Using the Optimality of Natural Branching Structures
,”
Int. J. Therm. Sci.
,
115
, pp.
16
28
.10.1016/j.ijthermalsci.2017.01.007
51.
Barik
,
A. K.
,
Mohanty
,
A.
,
Senapati
,
J. R.
, and
Awad
,
M. M.
,
2021
, “
Constructal Design of Different Ribs for Thermo-Fluid Performance Enhancement of a Solar Air Heater (SAH
),”
Int. J. Therm. Sci.
,
160
, p.
106655
.10.1016/j.ijthermalsci.2020.106655
52.
Ledezma
,
G. A.
, and
Bejan
,
A.
,
1998
, “
Constructal Three-Dimensional Tress for Conduction Between a Volume and One Point
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
4
), pp.
977
984
.10.1115/1.2825918
53.
Bejan
,
A.
, and
Dan
,
A.
,
1999
, “
Constructal Trees of Convective Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
3
), pp.
675
682
.10.1115/1.2826032
54.
Bejan
,
A.
, and
Dan
,
A.
,
1999
, “
Two Constructal Roots to Minimize Heat Flow and Resistance Via Greater Internal Complexity
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
1
), pp.
6
14
.10.1115/1.2825968
55.
Neagu
,
M.
, and
Bejan
,
A.
,
2001
, “
Constructal Placement of High Conductivity Inserts in a Slab: Optimal Design of Roughness
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
6
), pp.
1184
1189
.10.1115/1.1392988
56.
Rocha
,
L. A. O.
, and
Bejan
,
A.
,
2001
, “
Geometric Optimization of Periodic Flow and Heat Transfer in a Volume Cooled by Parallel Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
2
), pp.
233
239
.10.1115/1.1337654
57.
Vargas
,
J. V. C.
, and
Bejan
,
A.
,
2002
, “
The Optimal Shape of the Interface Between Two Conductive Bodies With Minimal Thermal Resistance
,”
ASME J. Heat Transfer-Trans. ASME
,
121
, pp.
1281
1221
.10.1115/1.1497355
58.
Ogiso
,
K.
,
2001
, “
Assessment of Overall Cooling Performance in Thermal Design of Electronics Based on Thermodynamics
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
5
), pp.
999
1005
.10.1115/1.1387025
You do not currently have access to this content.