Abstract

Droplet evaporation-based cooling techniques, such as the spray cooling, give high heat transfer rates by utilizing latent energy and are usually preferred in thermal applications. However, with the significant rise in heat dissipation levels for high heat flux devices, these devices cannot be thermally managed due to the limited cooling capacity of existing thermal fluids. In this paper, we report the evaporation of the Cu–Al2O3 hybrid nanofluid (HNF) droplet on a copper surface as well as its own residue surface, developed from the evaporation of the first Cu–Al2O3 HNF droplet. As the main novelty, we identify the critical residue size and investigate the residue size effect, above and below the critical residue size, on evaporation rate of the succeeding Cu–Al2O3 HNF droplet resting over a residue surface. We also develop a new analytical model to estimate the Cu–Al2O3 HNF droplet evaporation rate and compare our results with other existing models. The results show that the Cu–Al2O3 HNF droplet gives 17% higher evaporation rate than a water droplet on a copper surface. Also, the evaporation rate of the Cu–Al2O3 HNF droplet on a residue surface sharply increases by 106% with increasing residue size up to the critical residue size. However, further increasing the residue size above its critical value has a negligible effect on the droplet evaporation rate. Moreover, the evaporation rate of the Cu–Al2O3 HNF droplet on its residue surface is enhanced up to 104% when compared to a copper surface.

References

1.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
2.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer (Thesis)
,”
University of California
,
Los Angeles, CA
, Report No. AECU-4439.
3.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2009
, “
Single-Phase and Two-Phase Hybrid Cooling Schemes for High-Heat-Flux Thermal Management of Defense Electronics
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
021013
.10.1115/1.3111253
4.
Tso
,
C. Y.
, and
Chao
,
C. Y. H.
,
2015
, “
Study of Enthalpy of Evaporation, Saturated Vapor Pressure and Evaporation Rate of Aqueous Nanofluids
,”
Int. J. Heat Mass Transfer
,
84
, pp.
931
941
.10.1016/j.ijheatmasstransfer.2015.01.090
5.
Fu
,
S.
,
Tso
,
C.
,
Fong
,
Y.
, and
Chao
,
C. Y. H.
,
2017
, “
Evaporation of Al2O3-Water Nanofluids in an Externally Micro-Grooved Evaporator
,”
Sci. Technol. Built Environ.
,
23
(
2
), pp.
345
354
.10.1080/23744731.2016.1250562
6.
Tso
,
C. Y.
,
Fu
,
S. C.
, and
Chao
,
C. Y. H.
,
2014
, “
A Semi-Analytical Model for the Thermal Conductivity of Nanofluids and Determination of the Nanolayer Thickness
,”
Int. J. Heat Mass Transfer
,
70
, pp.
202
214
.10.1016/j.ijheatmasstransfer.2013.10.077
7.
Akilu
,
S.
,
Sharma
,
K. V.
,
Baheta
,
A. T.
, and
Mamat
,
R.
,
2016
, “
A Review of Thermophysical Properties of Water Based Composite Nanofluids
,”
Renewable Sustainable Energy Rev.
,
66
, pp.
654
678
.10.1016/j.rser.2016.08.036
8.
Sefiane
,
K.
, and
Bennacer
,
R.
,
2009
, “
Nanofluids Droplets Evaporation Kinetics and Wetting Dynamics on Rough Heated Substrates
,”
Adv. Colloid Interface Sci.
,
147–148
, pp.
263
271
.10.1016/j.cis.2008.09.011
9.
Kim
,
Y. C.
,
2015
, “
Evaporation of Nanofluid Droplet on Heated Surface
,”
Adv. Mech. Eng.
,
7
(
4
), p.
168781401557835
.10.1177/1687814015578358
10.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Spray Cooling—Part 1: Single-Phase and Nucleate Boiling Regimes, and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1174
1205
.10.1016/j.ijheatmasstransfer.2017.06.029
11.
Sakashita
,
H.
,
2016
, “
Pressure Effect on CHF Enhancement in Pool Boiling of Nanofluids
,”
J. Nucl. Sci. Technol.
,
53
(
6
), pp.
797
802
.10.1080/00223131.2015.1072482
12.
Song
,
S. L.
,
Lee
,
J. H.
, and
Chang
,
S. H.
,
2014
, “
CHF Enhancement of SiC Nanofluid in Pool Boiling Experiment
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
12
18
.10.1016/j.expthermflusci.2013.08.008
13.
Babu
,
J. A. R.
,
Kumar
,
K. K.
, and
Rao
,
S. S.
,
2017
, “
State-of-Art Review on Hybrid Nanofluids
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
551
565
.10.1016/j.rser.2017.04.040
14.
Nine
,
M. J.
,
Chung
,
H.
,
Tanshen
,
M. R.
,
Osman
,
N. A. B. A.
, and
Jeong
,
H.
,
2014
, “
Is Metal Nanofluid Reliable as Heat Carrier?
,”
J. Hazard. Mater.
,
273
, pp.
183
191
.10.1016/j.jhazmat.2014.03.055
15.
Sarkar
,
J.
,
Ghosh
,
P.
, and
Adil
,
A.
,
2015
, “
A Review on Hybrid Nanofluids: Recent Research, Development and Applications
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
164
177
.10.1016/j.rser.2014.11.023
16.
Siddiqui
,
F. R.
,
Tso
,
C. Y.
,
Chan
,
K. C.
,
Fu
,
S. C.
, and
Chao
,
C. Y. H.
,
2019
, “
On Trade-Off for Dispersion Stability and Thermal Transport of Cu-Al2O3 Hybrid Nanofluid for Various Mixing Ratios
,”
Int. J. Heat Mass Transfer
,
132
, pp.
1200
1216
.10.1016/j.ijheatmasstransfer.2018.12.094
17.
Batmunkh
,
M.
,
Tanshen
,
M. R.
,
Nine
,
M. J.
,
Myekhlai
,
M.
,
Choi
,
H.
,
Chung
,
H.
, and
Jeong
,
H.
,
2014
, “
Thermal Conductivity of TiO2 Nanoparticles Based Aqueous Nanofluids With an Addition of a Modified Silver Particle
,”
Ind. Eng. Chem. Res.
,
53
(
20
), pp.
8445
8451
.10.1021/ie403712f
18.
Nine
,
M. J.
,
Batmunkh
,
M.
,
Kim
,
J. H.
,
Chung
,
H. S.
, and
Jeong
,
H. M.
,
2012
, “
Investigation of Al2O3-MWCNTs Hybrid Dispersion in Water and Their Thermal Characterization
,”
J. Nanosci. Nanotechnol.
,
12
(
6
), pp.
4553
4559
.10.1166/jnn.2012.6193
19.
Han
,
Z. H.
,
Yang
,
B.
,
Kim
,
S. H.
, and
Zachariah
,
M. R.
,
2007
, “
Application of Hybrid Sphere/Carbonnanotube Particles in Nanofluids
,”
Nanotechnology
,
18
(
10
), pp.
105
109
.10.1088/0957-4484/18/10/105701
20.
Siddiqui
,
F. R.
,
Tso
,
C. Y.
,
Fu
,
S. C.
,
Chao
,
C. Y. H.
, and
Qiu
,
H. H.
,
2019
, “
Experimental Investigation on Silver-Graphene Hybrid Nanofluid Droplet Evaporation and Wetting Characteristics of Its Nanostructured Droplet Residue
,”
ASME
Paper No. AJKFluids2019-5049.10.1115/AJKFluids2019-5049
21.
Esfe
,
M. H.
,
Arani
,
A. A. A.
,
Rezaie
,
M.
,
Yan
,
W. M.
, and
Karimipour
,
A.
,
2015
, “
Experimental Determination of Thermal Conductivity and Dynamic Viscosity of Ag–MgO/Water Hybrid Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
66
, pp.
189
195
.10.1016/j.icheatmasstransfer.2015.06.003
22.
Yarmand
,
H.
,
Gharehkhani
,
S.
,
Ahmadi
,
G.
,
Shirazi
,
S. F. S.
,
Baradaran
,
S.
,
Montazer
,
E.
,
Zubir
,
M. N. M.
,
Alehashem
,
M. S.
,
Kazi
,
S. N.
, and
Dahari
,
M.
,
2015
, “
Graphene Nanoplatelets–Silver Hybrid Nanofluids for Enhanced Heat Transfer
,”
Energy Convers. Manage.
,
100
, pp.
419
428
.10.1016/j.enconman.2015.05.023
23.
Baghbanzadeh
,
M.
,
Rashidi
,
A.
,
Rashtchian
,
D.
,
Lotfi
,
R.
, and
Amrollahi
,
A.
,
2012
, “
Synthesis of Spherical Silica/Multiwall Carbon Nanotubes Hybrid Nanostructures and Investigation of Thermal Conductivity of Related Nanofluids
,”
Thermochim. Acta
,
549
, pp.
87
94
.10.1016/j.tca.2012.09.006
24.
Esfe
,
M. H.
,
Alirezaie
,
A.
, and
Rejvani
,
M.
,
2017
, “
An Applicable Study on the Thermal Conductivity of SWCNT-MgO Hybrid Nanofluid and Price-Performance Analysis for Energy Management
,”
Appl. Therm. Eng.
,
111
, pp.
1202
1210
.10.1016/j.applthermaleng.2016.09.091
25.
Siddiqui
,
F. R.
,
Tso
,
C. Y.
,
Fu
,
S. C.
,
Qiu
,
H. H.
, and
Chao
,
C. Y. H.
,
2020
, “
Evaporation of Silver-Graphene Hybrid Nanofluid Droplet on Its Nanostructured Residue and Plain Copper Surfaces at Elevated Temperatures
,”
ASME
Paper No. HT2020-8922.10.1115/HT2020-8922
26.
Deegan
,
R. D.
,
Bakajin
,
O.
,
Dupont
,
T. F.
,
Huber
,
G.
,
Nagel
,
S. R.
, and
Witten
,
T. A.
,
2000
, “
Contact Line Deposits in an Evaporating Drop
,”
Phys. Rev. E
,
62
(
1
), pp.
756
765
.10.1103/PhysRevE.62.756
27.
Deegan
,
R. D.
,
2000
, “
Pattern Formation in Drying Drops
,”
Phys. Rev. E
,
61
(
1
), pp.
475
485
.10.1103/PhysRevE.61.475
28.
Wang
,
F. C.
, and
Wu
,
H. A.
,
2013
, “
Pinning and Depinning Mechanism of the Contact Line During Evaporation of Nano-Droplets Sessile on Textured Surfaces
,”
Soft Matter
,
9
(
24
), pp.
5703
5709
.10.1039/c3sm50530h
29.
Moghiman
,
M.
, and
Aslani
,
B.
,
2013
, “
Influence of Nanoparticles on Reducing and Enhancing Evaporation Mass Transfer and Its Efficiency
,”
Int. J. Heat Mass Transfer
,
61
, pp.
114
118
.10.1016/j.ijheatmasstransfer.2013.01.057
30.
Chen
,
R. H.
,
Phuoc
,
T. X.
, and
Martello
,
D.
,
2010
, “
Effects of Nanoparticles on Nanofluid Droplet Evaporation
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3677
3682
.10.1016/j.ijheatmasstransfer.2010.04.006
31.
Radiom
,
M.
,
Yang
,
C.
, and
Chan
,
W. K.
,
2013
, “
Dynamic Contact Angle of Water-Based Titanium Oxide Nanofluid
,”
Nanoscale Res. Lett.
,
8
(
1
), p.
282
.10.1186/1556-276X-8-282
32.
Hong
,
S. J.
,
Chou
,
T. H.
,
Liu
,
Y. Y.
,
Sheng
,
Y. J.
, and
Tsao
,
H. K.
,
2013
, “
Advancing and Receding Wetting Behavior of a Droplet on a Narrow Rectangular Plane
,”
Colloid Polym. Sci.
,
291
(
2
), pp.
347
353
.10.1007/s00396-012-2797-5
33.
Zhong
,
X.
,
Crivoi
,
A.
, and
Duan
,
F.
,
2015
, “
Sessile Nanofluid Droplet Drying
,”
Adv. Colloid Interface Sci.
,
217
, pp.
13
30
.10.1016/j.cis.2014.12.003
34.
Zhang
,
C.
,
Zhu
,
X.
, and
Zhou
,
L.
,
2011
, “
Morphology Tunable Pinning Force and Evaporation Modes of Water Droplets on PDMS Spherical Cap Micron-Arrays
,”
Chem. Phys. Lett.
,
508
(
1–3
), pp.
134
138
.10.1016/j.cplett.2011.04.041
35.
Craster
,
R. V.
,
Matar
,
O. K.
, and
Sefiane
,
K.
,
2009
, “
Pinning, Retraction, and Terracing of Evaporating Droplets Containing Nanoparticles
,”
Langmuir
,
25
(
6
), pp.
3601
3609
.10.1021/la8037704
36.
Yunker
,
P. J.
,
Still
,
T.
,
Lohr
,
M. A.
, and
Yodh
,
A. G.
,
2011
, “
Suppression of the Coffee-Ring Effect by Shape-Dependent Capillary Interactions
,”
Nature
,
476
(
7360
), pp.
308
311
.10.1038/nature10344
37.
Lee
,
H. H.
,
Fu
,
S. C.
,
Tso
,
C. Y.
, and
Chao
,
C. Y. H.
,
2017
, “
Study of Residue Patterns of Aqueous Nanofluid Droplets With Different Particle Sizes and Concentrations on Different Substrates
,”
Int. J. Heat Mass Transfer
,
105
, pp.
230
236
.10.1016/j.ijheatmasstransfer.2016.09.093
38.
Bigioni
,
T. P.
,
Lin
,
X. M.
,
Nguyen
,
T. T.
,
Corwin
,
E. I.
,
Witten
,
T. A.
, and
Jaeger
,
H. M.
,
2006
, “
Kinetically Driven Self Assembly of Highly Ordered Nanoparticle Monolayers
,”
Nat. Mater.
,
5
(
4
), pp.
265
270
.10.1038/nmat1611
39.
Siddiqui
,
F. R.
,
Tso
,
C. Y.
,
Fu
,
S. C.
,
Qiu
,
H. H.
, and
Chao
,
C. Y. H.
,
2020
, “
Evaporation and Wetting Behavior of Silver-Graphene Hybrid Nanofluid Droplet on Its Porous Residue Surface for Various Mixing Ratios
,”
Int. J. Heat Mass Transfer
,
153
, p.
119618
.10.1016/j.ijheatmasstransfer.2020.119618
40.
Hu
,
H.
, and
Larson
,
R. G.
,
2002
, “
Evaporation of a Sessile Droplet on a Substrate
,”
J. Phys. Chem. B
,
106
(
6
), pp.
1334
1344
.10.1021/jp0118322
41.
Picknett
,
R. G.
, and
Bexon
,
R.
,
1977
, “
The Evaporation of Sessile or Pendant Drops in Still Air
,”
J. Colloid Interface Sci.
,
61
(
2
), pp.
336
350
.10.1016/0021-9797(77)90396-4
42.
Hu
,
D.
,
Wu
,
H.
, and
Liu
,
Z.
,
2014
, “
Effect of Liquid-Vapor Interface Area on the Evaporation Rate of Small Sessile Droplets
,”
Int. J. Therm. Sci.
,
84
, pp.
300
308
.10.1016/j.ijthermalsci.2014.05.024
43.
Popov
,
Y. O.
,
2005
, “
Evaporative Deposition Patterns: Spatial Dimensions of the Deposit
,”
Phys. Rev. E
,
71
(
3
), pp.
1
17
.10.1103/PhysRevE.71.036313
44.
Siddiqui
,
F. R.
,
Tso
,
C. Y.
,
Chan
,
K. C.
,
Fu
,
S. C.
, and
Chao
,
C. Y. H.
,
2019
, “
Dataset on Critical Parameters of Dispersion Stability of Cu/Al2O3 Nanofluid and Hybrid Nanofluid for Various Ultra-Sonication Times
,”
Data Brief
,
22
, pp.
863
865
.10.1016/j.dib.2019.01.007
45.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.10.1021/ie50320a024
46.
Young
,
T.
,
1805
, “
An Essay on the Cohesion of Fluids
,”
Philos. Trans. R. Soc. London
,
95
, pp.
65
87
.10.1098/rstl.1805.0005
47.
Fowkes
,
F. M.
,
1964
, “
Attractive Forces at Interfaces
,”
ACS Ind. Eng. Chem.
,
56
(
12
), pp.
40
52
.10.1021/ie50660a008
You do not currently have access to this content.