Abstract

We numerically investigate the melting and solidification behavior of phase-change materials (PCMs) encapsulated in a small-radii cylinder subjected to a cyclic convective boundary condition (square-wave). First, we explore the effects of the Stefan and Biot numbers on the nondimensionalized time required for a PCM initially held at Tcold to melt and reach the crossflow temperature Thot (i.e., reference Fourier number T̃ref). The increase in either Stefan or Biot number decreases T̃ref which can be predicted accurately using the correlation developed in this work. The variations of the PCM melt fraction, surface temperature, and heat transfer rate as a function of Fourier number are reported and analyzed. We further study the effect of the cyclic Fourier number T̃ on the periodic melting and freezing process. The melting or freezing front initiates at the outer periphery of the PCM and propagates toward the center. At higher frequencies, multiple two-phase interfaces are generated (propagating inward), and the surface temperature oscillates in the vicinity of the melting temperature. This increases the effective temperature difference with the crossflow and leads to a higher overall heat transfer.

References

1.
Karmakar
,
A.
,
Kanani
,
Y.
,
Bhattacharya
,
A.
,
Acharya
,
S.
,
Taghizadeh
,
S.
, and
Ling
,
K.
,
2019
, “
Optimization and Analysis of a Heat Exchanger With Encapsulated Phase Change Material
,”
J. Thermophys Heat Trans.,
33(4), pp.
1161
1175
.10.2514/1.t5720
2.
Song
,
S.
,
Qiu
,
F.
,
Zhu
,
W.
,
Guo
,
Y.
,
Zhang
,
Y.
,
Ju
,
Y.
,
Feng
,
R.
,
Liu
,
Y.
,
Chen
,
Z.
,
Zhou
,
J.
,
Xiong
,
C.
, and
Dong
,
L.
,
2019
, “
Polyethylene Glycol/Halloysite@Ag Nanocomposite PCM for Thermal Energy Storage: Simultaneously High Latent Heat and Enhanced Thermal Conductivity
,”
Sol. Energy Mater. Sol. Cells
,
193
, pp.
237
245
.10.1016/j.solmat.2019.01.023
3.
Wu
,
X.
,
Zhu
,
Z.
,
Zhang
,
H.
,
Xu
,
S.
,
Fang
,
Y.
, and
Yan
,
Z.
,
2020
, “
Structural Optimization of Light-Weight Battery Module Based on Hybrid Liquid Cooling With High Latent Heat PCM
,”
Int. J. Heat Mass Transfer
,
163
, p.
120495
.10.1016/j.ijheatmasstransfer.2020.120495
4.
Castell
,
A.
, and
Solé
,
C.
,
2015
, “
An Overview on Design Methodologies for Liquid-Solid PCM Storage Systems
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
289
307
.10.1016/j.rser.2015.07.119
5.
Miers
,
C. S.
, and
Marconnet
,
A.
,
2021
, “
Experimental Investigation of Composite Phase Change Material Heat Sinks for Enhanced Passive Thermal Management
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
1
), p.
013001
.10.1115/1.4048620
6.
Ali
,
H. M.
, and
Arshad
,
A.
,
2017
, “
Experimental Investigation of n-Eicosane Based Circular Pin-Fin Heat Sinks for Passive Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
,
112
, pp.
649
661
.10.1016/j.ijheatmasstransfer.2017.05.004
7.
Colla
,
L.
,
Ercole
,
D.
,
Fedele
,
L.
,
Mancin
,
S.
,
Manca
,
O.
, and
Bobbo
,
S.
,
2017
, “
Nano-Phase Change Materials for Electronics Cooling Applications
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
5
), p.
052406
.10.1115/1.4036017
8.
Konuklu
,
Y.
,
Ostry
,
M.
,
Paksoy
,
H. O.
, and
Charvat
,
P.
,
2015
, “
Review on Using Microencapsulated Phase Change Materials (PCM) in Building Applications
,”
Energy Build.
,
106
, pp.
134
155
.10.1016/j.enbuild.2015.07.019
9.
Mofijur
,
M.
,
Mahlia
,
T.
,
Silitonga
,
A.
,
Ong
,
H.
,
Silakhori
,
M.
,
Hasan
,
M.
,
Putra
,
N.
, and
Rahman
,
S.
,
2019
, “
Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview
,”
Energies
,
12
(
16
), p.
3167
.10.3390/en12163167
10.
Kim
,
T. Y.
,
Hyun
,
B.-S.
,
Lee
,
J.-J.
, and
Rhee
,
J.
,
2013
, “
Numerical Study of the Spacecraft Thermal Control Hardware Combining Solid–Liquid Phase Change Material and a Heat Pipe
,”
Aerosp. Sci. Technol.
,
27
(
1
), pp.
10
16
.10.1016/j.ast.2012.05.007
11.
Desai
,
A.
,
Singh
,
V.
, and
Bhavsar
,
R.
,
2017
, “
Numerical Investigation of PCM Based Thermal Control Module for Space Applications
,” Proceedings of the 24th National and Second International ISHMT-ASTFE Heat and Mass Transfer Conference (
IHMTC-2017
), Hyderabad, India, 2017, Begel House, pp.
621
628
.10.1615/IHMT C-2017.870
12.
Sarbu
,
I.
, and
Dorca
,
A.
,
2019
, “
Review on Heat Transfer Analysis in Thermal Energy Storage Using Latent Heat Storage Systems and Phase Change Materials
,”
Int. J. Energy Res.
,
43
(
1
), pp.
29
64
.10.1002/er.4196
13.
Sharma
,
A.
,
Tyagi
,
V.
,
Chen
,
C.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.10.1016/j.rser.2007.10.005
14.
Lohrasbi
,
S.
,
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2017
, “
Multi-Objective RSM Optimization of Fin Assisted Latent Heat Thermal Energy Storage System Based on Solidification Process of Phase Change Material in Presence of Copper Nanoparticles
,”
Appl. Therm. Eng.
,
118
, pp.
430
447
.10.1016/j.applthermaleng.2017.03.005
15.
Dutil
,
Y.
,
Rousse
,
D. R.
,
Salah
,
N. B.
,
Lassue
,
S.
, and
Zalewski
,
L.
,
2011
, “
A Review on Phase-Change Materials: Mathematical Modeling and Simulations
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
112
130
.10.1016/j.rser.2010.06.011
16.
Ghani
,
F.
,
Waser
,
R.
,
O'Donovan
,
T. S.
,
Schuetz
,
P.
,
Zaglio
,
M.
, and
Wortischek
,
J.
,
2018
, “
Non-Linear System Identification of a Latent Heat Thermal Energy Storage System
,”
Appl. Therm. Eng.
,
134
, pp.
585
593
.10.1016/j.applthermaleng.2018.02.035
17.
Liu
,
S.
,
Li
,
Y.
, and
Zhang
,
Y.
,
2015
, “
Review on Heat Transfer Mechanisms and Characteristics in Encapsulated PCMs
,”
Heat Transfer Eng.
,
36
(
10
), pp.
880
901
.10.1080/01457632.2015.965093
18.
Zeng
,
X.
, and
Faghri
,
A.
,
1994
, “
Temperature-Transforming Model for Binary Solid-Liquid Phase-Change Problems Part I: Mathematical Modeling and Numerical Methodology
,”
Numer. Heat Transfer, Part B
,
25
(
4
), pp.
467
480
.10.1080/10407799408955931
19.
Huo
,
Y.
, and
Rao
,
Z.
,
2018
, “
The Enthalpy-Transforming-Based Lattice Boltzmann Model for Solid–Liquid Phase Change
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
10
), p.
102301
.10.1115/1.4040345
20.
Meyer
,
G. H.
,
1973
, “
Multidimensional Stefan Problems
,”
SIAM J. Numer. Anal.
,
10
(
3
), pp.
522
538
.10.1137/0710047
21.
Shamsundar
,
N.
, and
Sparrow
,
E. M.
,
1975
, “
Analysis of Multidimensional Conduction Phase Change Via the Enthalpy Model
,”
ASME J. Heat Transfer-Trans. ASME
,
97
(
3
), pp.
333
340
.10.1115/1.3450375
22.
Bonacina
,
C.
,
Comini
,
G.
,
Fasano
,
A.
, and
Primicerio
,
M.
,
1973
, “
Numerical Solution of Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
16
(
10
), pp.
1825
1832
.10.1016/0017-9310(73)90202-0
23.
Yao
,
M.
, and
Chait
,
A.
,
1993
, “
An Alternative Formulation of the Apparent Heat Capacity Method for Phase-Change Problems
,”
Numer. Heat Transfer, Part B
,
24
(
3
), pp.
279
300
.10.1080/10407799308955894
24.
Fan
,
L.-W.
,
Zhu
,
Z.-Q.
,
Liu
,
M.-J.
,
Xu
,
C.-L.
,
Zeng
,
Y.
,
Lu
,
H.
, and
Yu
,
Z.-T.
,
2016
, “
Heat Transfer During Constrained Melting of Nano-Enhanced Phase Change Materials in a Spherical Capsule: An Experimental Study
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
12
), p.
122402
.10.1115/1.4034163
25.
Zhu
,
Z.-Q.
,
Liu
,
M.-J.
,
Hu
,
N.
,
Huang
,
Y.-K.
,
Fan
,
L.-W.
,
Yu
,
Z.-T.
, and
Ge
,
J.
,
2018
, “
Inward Solidification Heat Transfer of Nano-Enhanced Phase Change Materials in a Spherical Capsule: An Experimental Study
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
2
), p.
022301
.10.1115/1.4037776
26.
Hu
,
N.
,
Zhu
,
Z.-Q.
,
Li
,
Z.-R.
,
Tu
,
J.
, and
Fan
,
L.-W.
,
2019
, “
Unconstrained Melting Heat Transfer of Nano-Enhanced Phase-Change Materials in a Spherical Capsule for Latent Heat Storage: Effects of the Capsule Size
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
7
), p.
072301
.10.1115/1.4043621
27.
Safdari
,
M.
,
Ahmadi
,
R.
, and
Sadeghzadeh
,
S.
,
2020
, “
Numerical Investigation on PCM Encapsulation Shape Used in the Passive-Active Battery Thermal Management
,”
Energy
,
193
, p.
116840
.10.1016/j.energy.2019.116840
28.
Raj
,
A.
,
Srinivas
,
M.
, and
Jayaraj
,
S.
,
2019
, “
A Cost-Effective Method to Improve the Performance of Solar Air Heaters Using Discrete Macro-Encapsulated PCM Capsules for Drying Applications
,”
Appl. Therm. Eng.
,
146
, pp.
910
920
.10.1016/j.applthermaleng.2018.10.055
29.
Orozco
,
A.
,
Hinojosa
,
J.
, and
Amaya
,
K.
,
2021
, “
The Effect of a Segmented Wall Filled With PCM on Heat Transfer and Airflow in a Closed Cavity
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
9
), p.
093001
.10.1115/1.4051600
30.
Rao
,
Z.
,
Huo
,
Y.
, and
Li
,
Y.
,
2018
, “
The Lattice Boltzmann Investigation for the Melting Process of Phase Change Material in an Inclined Cavity
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
1
), p.
012301
.10.1115/1.4037908
31.
Hu
,
N.
,
Li
,
Z.-R.
,
Zhang
,
R.-H.
,
Liu
,
J.
, and
Fan
,
L.-W.
,
2021
, “
An Experimental Investigation of Constrained Melting Heat Transfer of Nano-Enhanced Phase Change Materials in a Horizontal Cylindrical Capsule Using Thermochromic Liquid Crystal Thermography
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
1
), p.
012401
.10.1115/1.4048471
32.
Ghalambaz
,
M.
,
Mehryan
,
S.
,
Mozaffari
,
M.
,
Zadeh
,
S. M. H.
, and
Pour
,
M. S.
,
2020
, “
Study of Thermal and Hydrodynamic Characteristics of Water-Nano-Encapsulated Phase Change Particles Suspension in an Annulus of a Porous Eccentric Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
156
, p.
119792
.10.1016/j.ijheatmasstransfer.2020.119792
33.
Balikowski
,
J. R.
, and
Mollendorf
,
J. C.
,
2007
, “
Performance of Phase Change Materials in a Horizontal Annulus of a Double-Pipe Heat Exchanger in a Water-Circulating Loop
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
3
), pp.
265
272
.10.1115/1.2426359
34.
Mahamudur Rahman
,
M.
,
Hu
,
H.
,
Shabgard
,
H.
,
Boettcher
,
P.
,
Sun
,
Y.
, and
McCarthy
,
M.
,
2016
, “
Experimental Characterization of Inward Freezing and Melting of Additive-Enhanced Phase-Change Materials Within Millimeter-Scale Cylindrical Enclosures
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
7
), p.
072301
.10.1115/1.4033007
35.
Allen
,
M. J.
,
Bergman
,
T. L.
,
Faghri
,
A.
, and
Sharifi
,
N.
,
2015
, “
Robust Heat Transfer Enhancement During Melting and Solidification of a Phase Change Material Using a Combined Heat Pipe-Metal Foam or Foil Configuration
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
10
), p.
102301
.10.1115/1.4029970
36.
Wickramaratne
,
C.
,
Moloney
,
F.
,
Pirasaci
,
T.
,
Kamal
,
R.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Dhau
,
J.
,
2016
, “
Experimental Study on Thermal Storage Performance of Cylindrically Encapsulated PCM in a Cylindrical Storage Tank With Axial Flow
,”
ASME Paper No. POWER2016-59427
.10.1115/POWER2016-59427
37.
Archibold
,
A. R.
,
Bhardwaj
,
A.
,
Rahman
,
M. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. L.
,
2016
, “
Comparison of Numerical and Experimental Assessment of a Latent Heat Energy Storage Module for a High-Temperature Phase-Change Material
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052007
.10.1115/1.4033585
38.
Pirasaci
,
T.
,
Wickramaratne
,
C.
,
Moloney
,
F.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E.
,
2017
, “
Dynamics of Phase Change in a Vertical PCM Capsule in the Presence of Radiation at High Temperatures
,”
Appl. Energy
,
206
, pp.
498
506
.10.1016/j.apenergy.2017.08.187
39.
Raj
,
A.
,
Srinivas
,
M.
, and
Jayaraj
,
S.
,
2019
, “
CFD Modeling of Macro-Encapsulated Latent Heat Storage System Used for Solar Heating Applications
,”
Int. J. Therm. Sci.
,
139
, pp.
88
104
.10.1016/j.ijthermalsci.2019.02.010
40.
Xu
,
T.
,
Chiu
,
J. N.
,
Palm
,
B.
, and
Sawalha
,
S.
,
2019
, “
Experimental Investigation on Cylindrically Macro-Encapsulated Latent Heat Storage for Space Heating Applications
,”
Energy Convers. Manage.
,
182
, pp.
166
177
.10.1016/j.enconman.2018.12.056
41.
Izgi
,
B.
, and
Arslan
,
M.
,
2020
, “
Numerical Analysis of Solidification of PCM in a Closed Vertical Cylinder for Thermal Energy Storage Applications
,”
Heat Mass Transfer
,
56
(
10
), pp.
2909
2922
.10.1007/s00231-020-02911-z
42.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2021
, “
Analysis of Hybrid Nanofluid and Surface Corrugation in the Laminar Convective Flow Through an Encapsulated PCM Filled Vertical Cylinder and POD-Based Modeling
,”
Int. J. Heat Mass Transfer
,
178
, p.
121623
.10.1016/j.ijheatmasstransfer.2021.121623
43.
Kumar
,
A.
, and
Saha
,
S. K.
,
2021
, “
Performance Analysis of a Packed Bed Latent Heat Thermal Energy Storage With Cylindrical-Shaped Encapsulation
,”
Int. J. Energy Res.
,
45
(
9
), pp.
13130
13148
.10.1002/er.6639
44.
Mazzeo
,
D.
, and
Oliveti
,
G.
,
2018
, “
Thermal Field and Heat Storage in a Cyclic Phase Change Process Caused by Several Moving Melting and Solidification Interfaces in the Layer
,”
Int. J. Therm. Sci.
,
129
, pp.
462
488
.10.1016/j.ijthermalsci.2017.12.026
45.
Ho
,
C. J.
, and
Chu
,
C. H.
,
1993
, “
Periodic Melting Within a Square Enclosure With an Oscillatory Surface Temperature
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
725
733
.10.1016/0017-9310(93)80048-Y
46.
Casano
,
G.
, and
Piva
,
S.
,
2002
, “
Experimental and Numerical Investigation of the Steady Periodic Solid-Liquid Phase-Change Heat Transfer
,”
Int. J. Heat Mass Transfer
,
45
(
20
), pp.
4181
4190
.10.1016/S0017-9310(02)00122-9
47.
Mazzeo
,
D.
,
Oliveti
,
G.
,
De Simone
,
M.
, and
Arcuri
,
N.
,
2015
, “
Analytical Model for Solidification and Melting in a Finite PCM in Steady Periodic Regime
,”
Int. J. Heat Mass Transfer
,
88
, pp.
844
861
.10.1016/j.ijheatmasstransfer.2015.04.109
48.
Kant
,
K.
,
Shukla
,
A.
,
Sharma
,
A.
, and
Biwole
,
P. H.
,
2018
, “
Melting and Solidification Behaviour of Phase Change Materials With Cyclic Heating and Cooling
,”
J. Energy Storage
,
15
, pp.
274
282
.10.1016/j.est.2017.12.005
49.
Kapilow
,
D.
,
Hsuan
,
Y. G.
,
Sun
,
Y.
, and
McCarthy
,
M.
,
2018
, “
Convective Melting and Freezing of Phase Change Materials Encapsulated Within Small Diameter Polymer Tubes
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
259
269
.10.1016/j.expthermflusci.2017.11.012
50.
Voller
,
V. R.
, and
Swaminathan
,
C. R.
,
1991
, “
General Source-Based Method for Solidification Phase Change
,”
Numer. Heat Transfer, Part B
,
19
(
2
), pp.
175
189
.10.1080/10407799108944962
51.
Voller
,
V. R.
,
Swaminathan
,
C. R.
, and
Thomas
,
B. G.
,
1990
, “
Fixed Grid Techniques for Phase Change Problems: A Review
,”
Int. J. Numer. Methods Eng.
,
30
(
4
), pp.
875
898
.10.1002/nme.1620300419
52.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.10.1016/0017-9310(87)90317-6
53.
Rösler
,
F.
, and
Brüggemann
,
D.
,
2011
, “
Shell-and-Tube Type Latent Heat Thermal Energy Storage: Numerical Analysis and Comparison With Experiments
,”
Heat Mass Transfer
,
47
(
8
), pp.
1027
1033
.10.1007/s00231-011-0866-9
54.
König-Haagen
,
A.
,
Franquet
,
E.
,
Pernot
,
E.
, and
Brüggemann
,
D.
,
2017
, “
A Comprehensive Benchmark of Fixed-Grid Methods for the Modeling of Melting
,”
Int. J. Therm. Sci.
,
118
, pp.
69
103
.10.1016/j.ijthermalsci.2017.04.008
55.
Rakotondrandisa
,
A.
,
Danaila
,
I.
, and
Danaila
,
L.
,
2019
, “
Numerical Modelling of a Melting-Solidification Cycle of a Phase-Change Material With Complete or Partial Melting
,”
Int. J. Heat Fluid Flow
,
76
, pp.
57
71
.10.1016/j.ijheatfluidflow.2018.11.004
56.
Zhao
,
W.
,
Elmozughi
,
A. F.
,
Oztekin
,
A.
, and
Neti
,
S.
,
2013
, “
Heat Transfer Analysis of Encapsulated Phase Change Material for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
63
, pp.
323
335
.10.1016/j.ijheatmasstransfer.2013.03.061
57.
Muhammad
,
M. D.
,
Badr
,
O.
, and
Yeung
,
H.
,
2015
, “
Validation of a CFD Melting and Solidification Model for Phase Change in Vertical Cylinders
,”
Numer. Heat Transfer, Part A
,
68
(
5
), pp.
501
511
.10.1080/10407782.2014.994432
58.
Longeon
,
M.
,
Soupart
,
A.
,
Fourmigué
,
J. F.
,
Bruch
,
A.
, and
Marty
,
P.
,
2013
, “
Experimental and Numerical Study of Annular PCM Storage in the Presence of Natural Convection
,”
Appl. Energy
,
112
, pp.
175
184
.10.1016/j.apenergy.2013.06.007
59.
Paterson
,
S.
,
1952
, “
Propagation of a Boundary of Fusion
,”
Proc. Glasgow Math. Assoc.
,
1
(
1
), pp.
42
47
.10.1017/S2040618500032937
60.
Özişik
,
M. N.
, and
Uzzell
,
J. C.
,
1979
, “
Exact Solution for Freezing in Cylindrical Symmetry With Extended Freezing Temperature Range
,”
ASME J. Heat Transfer-Trans. ASME
,
101
(
2
), pp.
331
334
.10.1115/1.3450969
61.
Rubitherm Technologies GmbH
,
2018
, “
Datasheet, RT35HC
,”
Rubitherm Technologies GmbH
,
Berlin, Germany
, www.rubitherm.eu/media/products/datasheets/Techdata_-RT35HC_EN_09102020.PDF
62.
Valentova
,
K.
,
Pechackova
,
K.
,
Prikryl
,
R.
,
Ostry
,
M.
, and
Zmeskal
,
O.
,
2017
, “
Study of the Thermal Properties of Selected PCMs for Latent Heat Storage in Buildings
,”
AIP Conf. Proc.
,
1866
, p.
040042
.10.1063/1.4994522
63.
Kraiem
,
M.
,
Karkri
,
M.
,
Nasrallah
,
S. B.
,
Sobolciak
,
P.
,
Fois
,
M.
, and
Alnuaimi
,
N. A.
,
2019
, “
Thermophysical Characterization and Numerical Investigation of Three Paraffin Waxes as Latent Heat Storage Materials
,”
Preprints 2019030034.
10.20944/preprints201903.0034.v1
You do not currently have access to this content.