Abstract

In air conditioning systems, lubricating oil leaves the compressor and circulates through the other system components. This lubricant acts as a contaminant affecting heat transfer in heat exchangers. The literature indicated that mixtures of refrigerants and nanolubricants, that is, nanoparticles dispersed in the lubricant oils, have potentials to augment heat transfer exchange effectiveness. However, the nanoparticle mechanisms leading to such heat transfer changes are still unclear and not well included in the models. In this work, an existing single-phase forced flow convective heat transfer model, originally developed for water-based nanofluids, was modified to include the effects of diffusion and mass balance of different shape nanoparticles within the laminar sublayer and turbulent layer of the flow. A new physics-based superposition heat transfer model for saturated two-phase flow boiling of refrigerant and nanolubricants was also developed by integrating the modified forced flow convective heat transfer model and a semi-empirical pool boiling model for nanolubricants. The new model included the several physical effects that influenced heat transfer, such as slip mechanisms at the nanoparticles and base fluid interface and its influence on the laminar sublayer thickness, momentum transfer from the nanoparticles to the growing bubbles, and formation of lubricant excess concentration at the tube surface and its influence on bubble growth and tube wetting. The new model was validated for single-phase convective heat transfer and two-phase flow boiling of refrigerant R410A with two nanolubricants, having nonspherical ZnO nanoparticles and spherical Al2O3 nanoparticles.

References

1.
Fang
,
X.
,
Chen
,
Y.
,
Zhang
,
H.
,
Chen
,
W.
,
Dong
,
A.
, and
Wang
,
R.
,
2016
, “
Heat Transfer and Critical Heat Flux of Nanofluid Boiling: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
62
(
Suppl. C
), pp.
924
940
.10.1016/j.rser.2016.05.047
2.
Henderson
,
K.
,
Park
,
Y.-G.
,
Liu
,
L.
, and
Jacobi
,
A. M.
,
2010
, “
Flow-Boiling Heat Transfer of R-134a-Based Nanofluids in a Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
944
951
.10.1016/j.ijheatmasstransfer.2009.11.026
3.
Deokar
,
P.
,
Cremaschi
,
L.
,
Wong
,
T.
, and
Criscuolo
,
G.
,
2016
, “
Effect of Nanoparticles Aspect Ratio on the Two Phase Flow Boiling Heat Transfer Coefficient and Pressure Drop of Refrigerant and Nanolubricants Mixtures in a 9.5 Mm Micro-Fin Tube
,”
16th International Refrigeration and Air Conditioning Conference at Purdue
, Purdue University, West Lafayette, IN, July 11–14, pp.
1
10
.https://docs.lib.purdue.edu/iracc/1601/
4.
Cremaschi
,
L.
,
Deokar
,
P. S.
, and
Bigi
,
A. A.
, M.,
2017
, “
Two Phase Flow Boiling Heat Transfer Coefficient and Pressure Drop of Refrigerant and γ-Al2O3 Based Nanolubricant Mixtures in a 9.5 Mm Smooth Tube
,”
Second Thermal and Fluid Engineering Conference, TEFC2017
, Las Vegas, NV, Apr. 2–5, pp.
3121
3135
.
5.
Bartelt
,
K.
,
Liu
,
L.
, and
Jacobi
,
A.
,
2008
, “
Flow-Boiling of R-134a/POE/CuO Nanofluids in a Horizontal Tube
,”
International Refrigeration and Air Conditioning Conference
, Purdue University, West Lafayette, IN, July 14–17, Paper No.
928
.https://docs.lib.purdue.edu/iracc/928/
6.
Ding
,
Y.
,
Chen
,
H.
,
Wang
,
L.
,
Yang
,
C.-Y.
,
He
,
Y.
,
Yang
,
W.
,
Lee
,
W. P.
,
Zhang
,
L.
, and
Huo
,
R.
,
2007
, “
Heat Transfer Intensification Using Nanofluids
,”
KONA Powder Particle J.
,
25
, pp.
23
38
.10.14356/kona.2007006
7.
Kedzierski
,
M. A.
, and
Gong
,
M.
,
2009
, “
Effect of CuO Nanolubricant on R134a Pool Boiling Heat Transfer
,”
Int. J. Refrig.
,
32
(
5
), pp.
791
799
.10.1016/j.ijrefrig.2008.12.007
8.
White
,
S. B.
,
Shih
,
A. J.
, and
Pipe
,
K. P.
,
2010
, “
Effects of Nanoparticle Layering on Nanofluid and Base Fluid Pool Boiling Heat Transfer From a Horizontal Surface Under Atmospheric Pressure
,”
J. Appl. Phys.
,
107
(
11
), p.
114302
.10.1063/1.3342584
9.
Cieśliński
,
J. T.
, and
Kaczmarczyk
,
T. Z.
,
2015
, “
Pool Boiling of Water–Al2O3 and Water–Cu Nanofluids Outside Porous Coated Tubes
,”
Heat Transfer Eng.
,
36
(
6
), pp.
553
563
.10.1080/01457632.2014.939046
10.
Kedzierski
,
M. A.
,
2003
, “
A Semi-Theoretical Model for Predicting Refrigerant/Lubricant Mixture Pool Boiling Heat Transfer
,”
Int. J. Refrig.
,
26
(
3
), pp.
337
348
.10.1016/S0140-7007(02)00125-1
11.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L.
,
2010
, “
Subcooled Flow Boiling Heat Transfer of Dilute Alumina, Zinc Oxide, and Diamond Nanofluids at Atmospheric Pressure
,”
Nucl. Eng. Des.
,
240
(
5
), pp.
1186
1194
.10.1016/j.nucengdes.2010.01.020
12.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
13.
Patra
,
N.
,
Ghosh
,
P.
,
Singh
,
R. S.
, and
Nayak
,
A.
,
2019
, “
Flow Visualization in Dilute Oxide Based Nanofluid Boiling
,”
Int. J. Heat Mass Transfer
,
135
, pp.
331
344
.10.1016/j.ijheatmasstransfer.2019.01.145
14.
Nikulin
,
A.
,
Khliyeva
,
O.
,
Zhelezny
,
V.
,
Semenyuk
,
Y.
,
Lukianov
,
N.
, and
Moreira
,
A. L. N.
,
2019
, “
How Does Change of the Bulk Concentration Affect the Pool Boiling of the Refrigerant Oil Solutions and Their Mixtures With Surfactant and Nanoparticles?
,”
Int. J. Heat Mass Transfer
,
137
, pp.
868
875
.10.1016/j.ijheatmasstransfer.2019.03.109
15.
Kedzierski
,
M. A.
,
2011
, “
Effect of Al2O3 Nanolubricant on R134a Pool Boiling Heat Transfer
,”
Int. J. Refrig.
,
34
(
2
), pp.
498
508
.10.1016/j.ijrefrig.2010.10.007
16.
Kedzierski
,
M. A.
,
2012
, “
R134a/Al2O3 Nanolubricant Mixture Pool Boiling on a Rectangular Finned Surface
,”
ASME J. Heat Transfer
,
134
(
12
), p.
121501
.10.1115/1.4007137
17.
Baqeri
,
S.
,
Akhavan-Behabadi
,
M. A.
, and
Ghadimi
,
B.
,
2014
, “
Experimental Investigation of the Forced Convective Boiling Heat Transfer of R-600a/Oil/Nanoparticle
,”
Int. Commun. Heat Mass Transfer
,
55
, pp.
71
76
.10.1016/j.icheatmasstransfer.2014.04.005
18.
Nikulin
,
A.
,
Moita
,
A. S.
,
Moreira
,
A. L. N.
,
Murshed
,
S. M. S.
,
Huminic
,
A.
,
Grosu
,
Y.
,
Faik
,
A.
,
Nieto-Maestre
,
J.
, and
Khliyeva
,
O.
,
2019
, “
Effect of Al2O3 Nanoparticles on Laminar, Transient and Turbulent Flow of Isopropyl Alcohol
,”
Int. J. Heat Mass Transfer
,
130
, pp.
1032
1044
.10.1016/j.ijheatmasstransfer.2018.10.114
19.
Peng
,
H.
,
Ding
,
G.
,
Jiang
,
W.
,
Hu
,
H.
, and
Gao
,
Y.
,
2009
, “
Heat Transfer Characteristics of Refrigerant-Based Nanofluid Flow Boiling Inside a Horizontal Smooth Tube
,”
Int. J. Refrig.
,
32
(
6
), pp.
1259
1270
.10.1016/j.ijrefrig.2009.01.025
20.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2016
, “
Nanofluid Convective Heat Transfer Using Semi Analytical and Numerical Approaches: A Review
,”
J. Taiwan Inst. Chem. Eng.
,
65
(
Suppl. C
), pp.
43
77
.10.1016/j.jtice.2016.05.014
21.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Proc. Des. Dev.
,
5
(
3
), pp.
322
329
.10.1021/i260019a023
22.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1987
, “
Simplified General Correlation for Saturated Flow Boiling and Comparison of Correlations With Data
,”
Chem. Eng. Res. Des.
,
65
, pp.
148
156
.
23.
Hu
,
H.
,
Ding
,
G.
, and
Wang
,
K.
,
2008
, “
Heat Transfer Characteristics of R410A–Oil Mixture Flow Boiling Inside a 7 mm Straight Microfin Tube
,”
Int. J. Refrig.
,
31
(
6
), pp.
1081
1093
.10.1016/j.ijrefrig.2007.12.004
24.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
219
228
.10.1115/1.2910348
25.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes: Part 3—Development of a New Heat Transfer Model Based on Flow Pattern
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
156
165
.10.1115/1.2830039
26.
Sawant
,
N. N.
,
2012
, “
Influence of Lubricant on Horizontal Convective Boiling in a Micro-Fin Tube
,” Ph.D. dissertation, The Catholic University of America, Washington, DC.
27.
Shah
,
M. M.
,
1982
, “
Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study
,”
ASHRAE Trans.
,
88
(
Part I
), pp.
185
196
.
28.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
29.
Cremaschi
,
L.
,
2012
, “
A Fundamental View of the Flow Boiling Heat Transfer Characteristics of Nano-Refrigerants
,” ASME 2012 International Mechanical Engineering Congress & Exposition, Houston, TX, Nov. 9–15, Paper No. 87788.
30.
Savithiri
,
S.
,
Pattamatta
,
A.
, and
Das
,
S. K.
,
2011
, “
Scaling Analysis for the Investigation of Slip Mechanisms in Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
471
471
.10.1186/1556-276X-6-471
31.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Effect of Particle Migration on Heat Transfer in Suspensions of Nanoparticles Flowing Through Minichannels
,”
Microfluid. Nanofluid.
,
1
(
2
), pp.
183
189
.10.1007/s10404-004-0027-2
32.
Bigi
,
A. A. M.
,
2018
, “
Investigation of Al2O3 Nanoparticle Laden Lubricants and Refrigerant Mixtures During Two-Phase Flow Boiling
,” Ph.D. dissertation, Auburn University, Auburn, AL.
33.
Bigi
,
A. A. M.
, and
Cremaschi
,
L.
,
2019
, “
Theoretical Investigation of Al2O3 Nanoparticle Slip Mechanisms in High-Viscosity Two-Component Mixture in Two-Phase Flow
,”
ASME J. Heat Transfer
,
141
(
7
), p.
0724011
.10.1115/1.4043174
34.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.10.1680/ijoti.1939.13150
35.
Deokar
,
P. S.
,
2019
, “
Experimental and Theoretical Investigation of Saturated Flow Boiling of R410A Refrigerant and Nanoparticle Laden Lubricants Mixtures in a Smooth Tube
,”
Ph.D. dissertation
,
Auburn University, Auburn, AL
.https://etd.auburn.edu/handle/10415/6894
36.
Michaelides
,
E. E.
,
2015
, “
Brownian Movement and Thermophoresis of Nanoparticles in Liquids
,”
Int. J. Heat Mass Transfer
,
81
, pp.
179
187
.10.1016/j.ijheatmasstransfer.2014.10.019
37.
McNab
,
G. S.
, and
Meisen
,
A.
,
1973
, “
Thermophoresis in Liquids
,”
J. Colloid Interface Sci.
,
44
(
2
), pp.
339
346
.10.1016/0021-9797(73)90225-7
38.
Wang
,
Z.
,
Kriegs
,
H.
,
Buitenhuis
,
J.
,
Dhont
,
J. K.
, and
Wiegand
,
S.
,
2013
, “
Thermophoresis of Charged Colloidal Rods
,”
Soft Matter
,
9
(
36
), pp.
8697
8704
.10.1039/c3sm51456k
39.
Dong
,
R.-Y.
,
Zhou
,
Y.
,
Yang
,
C.
, and
Cao
,
B.-Y.
,
2015
, “
Translational Thermophoresis and Rotational Movement of Peanut-Like Colloids Under Temperature Gradient
,”
Microfluid. Nanofluid.
,
19
(
4
), pp.
805
811
.10.1007/s10404-015-1605-1
40.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.10.1016/0017-9310(70)90114-6
41.
Bigi
,
A. A. M.
,
Wong
,
T.
,
Deokar
,
P. S.
, and
Cremaschi
,
L.
,
2015
, “
Experimental Investigation on Heat Transfer and Thermophysical Properties of Mixtures of Al2O3 Nanolubricants and Refrigerant R410A
,”
ASHRAE Trans.
,
121
(
1G
), pp.
1
8
.https://search.proquest.com/openview/02b3db9bc4c75011d5c4aaba6b51a0eb/1?pq-origsite=gscholar&cbl=34619
42.
Cremaschi
,
L.
,
Bigi
,
A. A. M.
,
Wong
,
T.
, and
Deokar
,
P. S.
,
2015
, “
Thermodynamic Properties of Al2O3 Nanolubricants: Part 1—Effects on the Two-Phase Pressure Drop
,”
Sci. Technol. Built Environ.
,
21
(
5
), pp.
607
620
.10.1080/23744731.2015.1023165
43.
Kedzierski
,
M. A.
,
Brignoli
,
R.
,
Quine
,
K. T.
, and
Brown
,
J. S.
,
2017
, “
Viscosity, Density, and Thermal Conductivity of Aluminum Oxide and Zinc Oxide Nanolubricants
,”
Int. J. Refrig.
,
74
(
Suppl C
), pp.
3
11
.10.1016/j.ijrefrig.2016.10.003
44.
Hewitt
,
G. F.
, and
Hall-Taylor
,
N. S.
,
1970
, “
Chapter 4—Simple Analytical Models of Annular Two-Phase Flow and Their Applications
,”
Annular Two-Phase Flow
,
Pergamon
,
Amsterdam, The Netherlands
, pp.
50
75
.
45.
Sawant
,
N. N.
,
Kedzierski
,
M. A.
, and
Brown
,
J. S.
,
2007
, “
Effect of Lubricant on R410A Horizontal Flow Boiling
,” National Institute of Standards and Technology, Gaithersburg, MD, Report No. 7456.
46.
Thome
,
J. R.
,
1995
, “
Comprehensive Thermodynamic Approach to Modeling Refrigerant-Lubricating Oil Mixtures
,”
HVACR Res.
,
1
(
2
), pp.
110
125
.10.1080/10789669.1995.10391313
47.
Kedzierski
,
M. A.
,
2003
, “
Improved Thermal Boundary Layer Parameter for Semi-Theoretical Refrigerant/Lubricant Pool Boiling Model
,”
International Congress of Refrigeration
, Washington, DC, Paper No.
ICR0504
, pp.
1
8
.https://www.nist.gov/publications/improved-thermal-boundary-layer-parameter-semi-theoretical-refrigerantlubricant-pool
48.
Bennett
,
D. L.
, and
Chen
,
J. C.
,
1980
, “
Forced Convective Boiling in Vertical Tubes for Saturated Pure Components and Binary Mixtures
,”
AIChE J.
,
26
(
3
), pp.
454
461
.10.1002/aic.690260317
49.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.10.1016/0017-9310(86)90205-X
50.
Zou
,
X.
,
Gong
,
M. Q.
,
Chen
,
G. F.
,
Sun
,
Z. H.
,
Zhang
,
Y.
, and
Wu
,
J. F.
,
2010
, “
Experimental Study on Saturated Flow Boiling Heat Transfer of R170/R290 Mixtures in a Horizontal Tube
,”
Int. J. Refrig.
,
33
(
2
), pp.
371
380
.10.1016/j.ijrefrig.2009.10.013
51.
Zürcher
,
O.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
In-Tube Flow Boiling of R-407C and R-407C/Oil Mixtures—Part II: Plain Tube Results and Predictions
,”
HVACR Res.
,
4
(
4
), pp.
373
399
.10.1080/10789669.1998.10391411
52.
Chen
,
W.
, and
Fang
,
X.
,
2014
, “
A Note on the Chen Correlation of Saturated Flow Boiling Heat Transfer
,”
Int. J. Refrig.
,
48
, pp.
100
104
.10.1016/j.ijrefrig.2014.09.008
53.
Kedzierski
,
M. A.
, and
Kaul
,
M. P.
,
1998
, “
Horizontal Nucleate Flow Boiling Heat Transfer Coefficient Measurements and Visual Observations for R12, R134a and R134a/Ester Lubricant Mixtures
,”
Int. J. Fluid Mech. Res.
,
25
(
1–3
), pp.
386
399
.10.1615/InterJFluidMechRes.v25.i1-3.340
54.
Shen
,
B.
, and
Groll
,
E. A.
,
2005
, “
Review Article: A Critical Review of the Influence of Lubricants on the Heat Transfer and Pressure Drop of Refrigerants—Part 1: Lubricant Influence on Pool and Flow Boiling
,”
HVACR Res.
,
11
(
3
), pp.
341
359
.10.1080/10789669.2005.10391142
55.
Deokar
,
P. S.
, and
Cremaschi
,
L.
,
2020
, “
Effect of Nanoparticle Additives on the Refrigerant and Lubricant Mixtures Heat Transfer Coefficient During in-Tube Single-Phase Heating and Two-Phase Flow Boiling
,”
Int. J. Refrig.
,
110
, pp.
142
152
.10.1016/j.ijrefrig.2019.10.018
56.
Deokar
,
P. S.
, and
Cremaschi
,
L.
,
2020
, “
Experimental Investigation of Two Phase Flow Boiling Heat Transfer of Mixtures of Refrigerant R410A and Nanolubricants in a Horizontal Smooth Copper Tube
,”
Sci. Technol. Built Environ.
,
26
(
4
), pp.
449
464
.10.1080/23744731.2019.1686334
57.
Bigi
,
A. A. M.
,
Cremaschi
,
L.
, and
Deokar
,
P. S.
,
2017
, “
Nanolubricants Flow Boiling Heat Transfer Enhancement in a Microfin Tube Evaporator—IRG0021
,”
Sci. Technol. Built Environ.
,
23
(
6
), pp.
960
969
.10.1080/23744731.2017.1333347
58.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass-Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
59.
Gnielinski
,
V.
,
1975
, “
Neue Gleichungen Für Den Wärme- Und Den Stoffübergang in Turbulent Durchströmten Rohren Und Kanälen
,”
Forsch. Ingenieurwes. A
,
41
(
1
), pp.
8
16
.10.1007/BF02559682
You do not currently have access to this content.