Abstract

The thermal and fluid dynamic behavior of a confined two-dimensional steady laminar nanofluid jet impinging on a horizontal plate embedded with five discrete heating elements subjected to a constant surface heat flux has been studied for a range of Reynolds number (Re) from 100 to 400 with Prandtl number, Pr=6.96, of the base fluid. Variation of inlet Reynolds number produces a significant change of the flow and heat transfer characteristics in the domain. Increasing the nanoparticle concentration (ϕ) from 0% to 4% exhibits discernible change in equivalent Re and Pr caused by the modification of dynamic viscosity, effective density, thermal conductivity, and specific heat of the base fluid. Considerable improvement in heat transfer from the heaters is observed as the maximum temperature of the impingement wall is diminished from 0.95 to 0.55 by increasing Re from 100 to 400; however, the result of increasing ϕ on cooling of the heaters is less appreciable. Self-similar behavior has been depicted by cross-stream variation of temperature and streamwise heat flux in the developed region along the impingement wall up to Re=300 for ϕ=0%to4%. But the spread of the respective quantities shows strong dependence on ϕ at Re=300 with sudden attenuation in magnitude in the developed region of flow. Substantial influence of Re is evident on Eckert number and pumping power. Eckert number decreases, whereas pumping power increases with an increase in Re, and the respective variations exhibit correspondence with power fit correlations.

References

1.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L.
,
Koo
,
J.-M.
,
Maveety
,
J. G.
,
Sanchez
,
E. A.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
,
2004
, “
Micromachined Jets for Liquid Impingement Cooling of Vlsi Chips
,”
J. Microelectromech. Syst.
,
13
(
5
), pp.
833
842
.10.1109/JMEMS.2004.835768
2.
Wadsworth
,
D.
, and
Mudawar
,
I.
,
1990
, “
Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
891
898
.10.1115/1.2910496
3.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
,
2007
, “
Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.10.1080/01457630701421703
4.
Choi
,
S. U.
,
2009
, “
Nanofluids: From Vision to Reality Through Research
,”
ASME J. Heat Transfer
,
131
(
3
), p.
033106
.10.1115/1.3056479
5.
Sparrow
,
E. M.
, and
Wong
,
T.
,
1975
, “
Impingement Transfer Coefficients Due to Initially Laminar Slot Jets
,”
Int. J. Heat Mass Transfer
,
18
(
5
), pp.
597
605
.10.1016/0017-9310(75)90271-9
6.
Webb
,
B.
, and
Ma
,
C.-F.
,
1995
, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transfer
,
26
,
pp.
105
217
.
7.
Nguyen
,
C. T.
,
Galanis
,
N.
,
Polidori
,
G.
,
Fohanno
,
S.
,
Popa
,
C. V.
, and
Le Bechec
,
A.
,
2009
, “
An Experimental Study of a Confined and Submerged Impinging Jet Heat Transfer Using Al2O3-Water Nanofluid
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
401
411
.10.1016/j.ijthermalsci.2008.10.007
8.
Vaziei
,
P.
, and
Abouali
,
O.
,
2009
, “
Numerical Study of Fluid Flow and Heat Transfer for Al2O3-Water Nanofluid Impinging Jet
,”
ASME
Paper No. ICNMM2009-82250
.10.1115/ICNMM2009-82250
9.
Gherasim
,
I.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Vo-Ngoc
,
D.
,
2009
, “
Experimental Investigation of Nanofluids in Confined Laminar Radial Flows
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1486
1493
.10.1016/j.ijthermalsci.2009.01.008
10.
Gherasim
,
I.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Vo-Ngoc
,
D.
,
2011
, “
Heat Transfer Enhancement and Pumping Power in Confined Radial Flows Using Nanoparticle Suspensions (Nanofluids)
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
369
377
.10.1016/j.ijthermalsci.2010.04.008
11.
Li
,
Q.
,
Xuan
,
Y.
, and
Yu
,
F.
,
2012
, “
Experimental Investigation of Submerged Single Jet Impingement Using Cu–Water Nanofluid
,”
Appl. Therm. Eng.
,
36
, pp.
426
433
.10.1016/j.applthermaleng.2011.10.059
12.
Sun
,
B.
,
Qu
,
Y.
, and
Yang
,
D.
,
2016
, “
Heat Transfer of Single Impinging Jet With cu Nanofluids
,”
Appl. Therm. Eng.
,
102
, pp.
701
707
.10.1016/j.applthermaleng.2016.03.166
13.
Roy
,
G.
,
Nguyen
,
C. T.
, and
Lajoie
,
P.-R.
,
2004
, “
Numerical Investigation of Laminar Flow and Heat Transfer in a Radial Flow Cooling System With the Use of Nanofluids
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
497
511
.10.1016/j.spmi.2003.09.011
14.
Roy
,
G.
,
Palm
,
S. J.
, and
Nguyen
,
C. T.
,
2005
, “
Heat Transfer and Fluid Flow of Nanofluids in Laminar Radial Flow Cooling Systems
,”
J. Therm. Sci.
,
14
(
4
), pp.
362
367
.10.1007/s11630-005-0059-2
15.
Roy
,
G. C.
,
Nguyen
,
C. T.
, and
Comeau
,
M.
,
2006
, “
Numerical Investigation of Electronic Component Cooling Enhancement Using Nanofluids in a Radial Flow Cooling System
,”
J. Enhanced Heat Transfer
,
13
(
2
), pp.
101
115
.10.1615/JEnhHeatTransf.v13.i2.20
16.
Palm
,
S. J.
,
Roy
,
G.
, and
Nguyen
,
C. T.
,
2006
, “
Heat Transfer Enhancement With the Use of Nanofluids in Radial Flow Cooling Systems Considering Temperature-Dependent Properties
,”
Appl. Thermal Eng.
,
26
(
17–18
), pp.
2209
2218
.10.1016/j.applthermaleng.2006.03.014
17.
Zeitoun
,
O.
,
Ali
,
M.
, and
Al-Ansary
,
H.
,
2013
, “
The Effect of Particle Concentration on Cooling of a Circular Horizontal Surface Using Nanofluid Jets
,”
Nanoscale Microscale Thermophys. Eng.
,
17
(
2
), pp.
154
171
.10.1080/15567265.2012.749963
18.
Manca
,
O.
,
Mesolella
,
P.
,
Nardini
,
S.
, and
Ricci
,
D.
,
2011
, “
Numerical Study of a Confined Slot Impinging Jet With Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
188
.10.1186/1556-276X-6-188
19.
Manca
,
O.
,
Nardini
,
S.
,
Ricci
,
D.
, and
Tamburrino
,
S.
,
2013
, “
A Numerical Investigation on Nanofluid Laminar Mixed Convection in Confined Impinging Jets
,”
ASME
Paper No. IMECE2013-65915.
10.1115/IMECE2013-65915
20.
Manca
,
O.
,
Ricci
,
D.
,
Nardini
,
S.
, and
Di Lorenzo
,
G.
,
2016
, “
Thermal and Fluid Dynamic Behaviors of Confined Laminar Impinging Slot Jets With Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
70
, pp.
15
26
.10.1016/j.icheatmasstransfer.2015.11.010
21.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
,
Essex, UK
.
22.
Rea
,
U.
,
McKrell
,
T.
,
Wen Hu
,
L.
, and
Buongiorno
,
J.
,
2009
, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2042
2048
.10.1016/j.ijheatmasstransfer.2008.10.025
23.
Sommers
,
A. D.
, and
Yerkes
,
K. L.
,
2010
, “
Experimental Investigation Into the Convective Heat Transfer and System-Level Effects of Al2O3-Propanol Nanofluid
,”
J. Nanopart. Res.
,
12
(
3
), pp.
1003
1014
.10.1007/s11051-009-9657-3
24.
Kim
,
S.
,
Yoo
,
H.
, and
Kim
,
C.
,
2012
, “
Convective Heat Transfer of Alumina Nanofluids in Laminar Flows Through a Pipe at the Thermal Entrance Regime
,”
Korean J. Chem. Eng.
,
29
(
10
), pp.
1321
1328
.10.1007/s11814-012-0025-0
25.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
, Vol.
3
,
McGraw-Hill
,
New York
.
26.
Masoumi
,
N.
,
Sohrabi
,
N.
, and
Behzadmehr
,
A.
,
2009
, “
A New Model for Calculating the Effective Viscosity of Nanofluids
,”
J. Phys. D: Appl. Phys.
,
42
(
5
), p.
055501
.10.1088/0022-3727/42/5/055501
27.
Zhou
,
S.-Q.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), p.
093123
.10.1063/1.2890431
28.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
), p.
153107
.10.1063/1.2093936
29.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
New York
.
30.
Hayase
,
T.
,
Humphrey
,
J.
, and
Greif
,
R.
,
1992
, “
A Consistently Formulated Quick Scheme for Fast and Stable Convergence Using Finite Volume Iterative Calculation Procedures
,”
J. Comput. Phys.
,
98
(
1
), pp.
108
118
.10.1016/0021-9991(92)90177-Z
31.
Kimura
,
S.
, and
Bejan
,
A.
,
1983
, “
The Heatline Visualization of Convective Heat Transfer
,”
ASME J. Heat Transfer
,
105
(
4
), pp.
916
919
.10.1115/1.3245684
32.
Glauert
,
M.
,
1956
, “
The Wall Jet
,”
J. Fluid Mech.
,
1
(
06
), pp.
625
643
.10.1017/S002211205600041X
You do not currently have access to this content.