Abstract

This research investigates the melting rate of a phase change material (PCM) in the presence of Rayleigh–Benard convection. A scaling analysis is conducted for the first time for such a problem, which is useful to identify the parameters affecting the phase change rate and to develop correlations for the solid–liquid interface location and the Nusselt number. The solid–liquid interface and flow patterns in the liquid region are analyzed for PCM in a rectangular enclosure heated from bottom. Numerical and experimental results both reveal that the number of Benard cells is proportional to the ratio of the length of the rectangular enclosure over the solid–liquid interface location (i.e.,, the liquified region aspect ratio). Their effect on the local heat flux is also analyzed as the local heat flux profile changes with the solid–liquid interface moving upward. The variations of average Nusselt number are obtained in terms of the Stefan number, Fourier number, and Rayleigh number. Eventually, the experimental and numerical data are used to develop correlations for the solid–liquid interface location and average Nusselt number for this type of melting problems.

References

1.
Oro
,
E.
,
De Garcia
,
A.
,
Castell
,
A.
,
Farid
,
M. M.
, and
Cabeza
,
L. F.
,
2017
, “
Review on Phase Change Material (PCMs) for Cold Thermal Energy Storage Applications
,”
Appl. Energy
,
99
, pp.
513
533
.https://doi.org/10.1016/j.apenergy.2012.03.058
2.
Zhou
,
D.
,
Zhao
,
C. Y.
, and
Tian
,
Y.
,
2012
, “
Review on Thermal Energy Storage With Phase Change Materials (PCMs) in Building Applications
,”
Appl. Energy
,
92
, pp.
593
605
.10.1016/j.apenergy.2011.08.025
3.
Xu
,
H.
,
Romagnoli
,
A.
,
Sze
,
J. Y.
, and
Py
,
X.
,
2017
, “
Application of Material Assessment Methodology in Latent Heat Thermal Energy Storage for Waste Heat Recovery
,”
Appl. Energy
,
187
, pp.
281
290
.10.1016/j.apenergy.2016.11.070
4.
Jany
,
P.
, and
Bejan
,
A.
,
1988
, “
Scaling Theory of Melting With Natural Convection in an Enclosure
,”
Int. J. Heat Mass Transfer
,
31
(
6
), pp.
1221
1235
.10.1016/0017-9310(88)90065-8
5.
Ye
,
W. B.
,
Zhu
,
D. S.
, and
Wang
,
N.
,
2012
, “
Fluid Flow and Heat Transfer in a Latent Thermal Energy Unit With Different Phase Change Material (PCM) Cavity Volume Fractions
,”
Appl. Therm. Eng.
,
42
, pp.
49
57
.10.1016/j.applthermaleng.2012.03.002
6.
Labihi
,
A.
,
Aitlahbib
,
F.
,
Chehouani
,
H.
,
Benhamou
,
B.
,
Ouikhalfan
,
M.
,
Croitoru
,
C.
, and
Nastase
,
I.
,
2017
, “
Effect of Phase Change Material Wall on Natural Convection Heat Transfer Inside an Air Filled Enclosure
,”
Appl. Therm. Eng.
,
126
, pp.
305
314
.10.1016/j.applthermaleng.2017.07.112
7.
Ezan
,
M. A.
, and
Kalfa
,
M.
,
2016
, “
Numerical Investigation of Transient Natural Convection Heat Transfer of Freezing Water in a Square Cavity
,”
Int. J. Heat Fluid Flow
,
61
, pp.
438
448
.10.1016/j.ijheatfluidflow.2016.06.004
8.
Joneidi
,
M. H.
,
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
, and
Bahrampoury
,
R.
,
2017
, “
Experimental Investigation of Phase Change in a Cavity for Varying Heat Flux and Inclination Angles
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
594
607
.10.1016/j.expthermflusci.2017.07.017
9.
Sun
,
X.
,
Chu
,
Y.
,
Mo
,
Y.
,
Fan
,
S.
, and
Liao
,
S.
,
2018
, “
Experimental Investigations on the Heat Transfer of Melting Phase Change Material (PCM)
,”
Energy Procedia
,
152
, pp.
186
191
.10.1016/j.egypro.2018.09.079
10.
Jin
,
X.
,
Medina
,
M. A.
, and
Zhang
,
X.
,
2014
, “
On the Placement of a Phase Change Material Thermal Shield Within the Cavity of Buildings Walls for Heat Transfer Rate Reduction
,”
Energy
,
73
, pp.
780
786
.10.1016/j.energy.2014.06.079
11.
Jourabian
,
M.
,
Farhadi
,
M.
, and
Darzi
,
A. A. R.
,
2013
, “
Convection-Dominated Melting of Phase Change Material in Partially Heated Cavity: Lattice Boltzmann Study
,”
Heat Mass Transf. Stoffuebertragung
,
49
(
4
), pp.
555
565
.10.1007/s00231-012-1102-y
12.
Aitlahbib
,
F.
, and
Chehouani
,
H.
,
2015
, “
Numerical Study of Heat Transfer Inside a Keeping Warm System (KWS) Incorporating Phase Change Material
,”
Appl. Therm. Eng.
,
75
, pp.
73
85
.10.1016/j.applthermaleng.2014.09.035
13.
Bejan
,
A.
,
2013
,
Convective Heat Transfer
, 4th ed., John
Wiley & Sons, Inc.
, Hoboken, NJ.
14.
Tan
,
F. L.
, and
Tso
,
C. P.
,
2004
, “
Cooling of Mobile Electronic Devices Using Phase Change Materials
,”
Appl. Therm. Eng.
,
24
(
2–3
), pp.
159
169
.10.1016/j.applthermaleng.2003.09.005
15.
Gong
,
Z. X.
, and
Mujumdar
,
A. S.
,
1998
, “
Flow and Heat Transfer in Convection-Dominated Melting in a Rectangular Cavity Heated From Below
,”
Int. J. Heat Mass Transfer
,
41
(
17
), pp.
2573
2580
.10.1016/S0017-9310(97)00374-8
16.
Madruga
,
S.
, and
Curbelo
,
J.
,
2018
, “
Dynamic of Plumes and Scaling During the Melting of a Phase Change Material Heated From Below
,”
Int. J. Heat Mass Transfer
,
126
, pp.
206
220
.10.1016/j.ijheatmasstransfer.2018.05.075
17.
Madruga
,
S.
,
Haruki
,
N.
, and
Horibe
,
A.
,
2018
, “
Experimental and Numerical Study of Melting of the Phase Change Material Tetracosane
,”
Int. Commun. Heat Mass Transfer
,
98
, pp.
163
170
.10.1016/j.icheatmasstransfer.2018.08.021
18.
Favier
,
B.
,
Purseed
,
J.
, and
Duchemin
,
L.
,
2019
, “
Rayleigh–Bénard Convection With a Melting Boundary
,”
J. Fluid Mech.
,
858
, pp.
437
473
.10.1017/jfm.2018.773
19.
Yang
,
X. H.
, and
Liu
,
J.
,
2018
, “
Probing the Rayleigh–Benard Convection Phase Change Mechanism of Low-Melting-Point Metal Via Lattice Boltzmann Method
,”
Numer. Heat Transfer Part A Appl
,
73
(
1
), pp.
34
54
.10.1080/10407782.2017.1420307
20.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase System
, Elsevier Academic Press, Amsterdam, The Netherlands.
21.
Parsazadeh
,
M.
, and
Duan
,
X.
,
2017
, “
Numerical and Statistical Study on Melting of Nanoparticle Enhanced Phase Change Material in a Shell-and-Tube Thermal Energy Storage System
,”
Appl. Therm. Eng.
,
111
, pp.
950
960
.10.1016/j.applthermaleng.2016.09.133
22.
Parsazadeh
,
M.
, and
Duan
,
X.
,
2018
, “
Numerical Study on the Effects of Fins and Nanoparticles in a Shell and Tube Phase Change Thermal Energy Storage Unit
,”
Appl. Energy
,
216
, pp.
142
156
.10.1016/j.apenergy.2018.02.052
23.
Abdollahzadeh
,
M.
, and
Esmaeilpour
,
M.
,
2015
, “
Enhancement of Phase Change Material (PCM) Based Latent Heat Storage System With Nanofluid and Wavy Surface
,”
Int. J. Heat Mass Transfer
,
80
, pp.
376
385
.10.1016/j.ijheatmasstransfer.2014.09.007
24.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics
, Pearson, Edinburgh Gate, Harlow, UK.
25.
Shang
,
D.
,
2006
,
Free Convection Film Flows and Heat Transfer
,
Springer
,
Berlin Heidelberg
.
26.
Gao
,
C.
, and
Viskanta
,
R.
,
1986
, “
Melting an Solidification of a Pure Metal on a Vertical Wall
,”
ASME J. Heat Transfer
,
108
(
1
), pp.
174
181
.10.1115/1.3246884
27.
Khodadadi
,
J. M.
, and
Hosseinizadeh
,
S. F.
,
2007
, “
Nanoparticle-Enhanced Phase Change Materials (NEPCM) With Great Potential for Improved Thermal Energy Storage
,”
Int. Commun. Heat Mass Transfer
,
34
(
5
), pp.
534
543
.10.1016/j.icheatmasstransfer.2007.02.005
28.
Al-Jethelah
,
M.
,
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Dutta
,
A.
,
2018
, “
Nano-PCM Filled Energy Storage System for Solar-Thermal Applications
,”
Renew. Energy
,
126
, pp.
137
155
.10.1016/j.renene.2018.02.119
29.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurment Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
30.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2012
,
Fundamentals of Heat and Mass Transfer
, 7th ed., Vol.
66
, John
Wiley & Sons, Inc.
Hoboken, NJ.
You do not currently have access to this content.