Abstract

This study addresses the second Graetz problem with prescribed wall heat flux employing the transversal method of lines (TMOL), which deviates significantly from the traditional mathematical procedures employed in the past. The wall heat flux is customarily provided by electrical, radiative or solar heating in engineering applications. The TMOL transforms the governing two-dimensional energy equation with temperature-invariant thermo-physical properties into a sequence of adjoint ordinary differential equations of second order with the radial variable as the independent variable. The singular feature in those equations is the embedded axial variable interval. For the implementation of TMOL, a special computational domain consists in a condensed set of transversal lines displayed in the cross section of the tube. An approximate, semi-analytical temperature distribution is obtained with the solution of the first adjoint ordinary differential equation of second order, which is expressed in terms of the Kummer function of first kind M(a,b,c). From here, the approximate, semi-analytical wall and center temperature distributions exhibit excellent quality because the two compare favorably with the exact, analytical wall and center temperature distributions given by the classical Graetz infinite series. As a beneficial consequence, usage of the second adjoint ordinary differential equation of second order having more complex structure becomes unnecessary.

References

1.
Graetz
,
L.
,
1885
, “
Über Die Wärmeleitungsfähigkeit Von Flüssigkeiten
,”
Ann. Phys.
,
261
(
7
), pp.
337
357
.10.1002/andp.18852610702
2.
Siegel
,
R.
,
Sparrow
,
E. M.
, and
Hallman
,
T. M.
,
1958
, “
Steady Laminar Heat Transfer in a Circular Tube With Prescribed Wall Heat Flux
,”
Appl. Sci. Res., Sect. A7
,
7
(
5
), pp.
386
397
.10.1007/BF03184999
3.
Hsu
,
C. J.
,
1965
, “
Heat Transfer in a Round Tube With Sinusoidal Wall Heat Flux Distribution
,”
AIChE J.
,
11
(
4
), pp.
690
695
.10.1002/aic.690110423
4.
Shah
,
R. K.
,
1975
, “
Thermal Entry Length Solutions for the Circular Tube and the Parallel–Plate Channel
,”
Proceedings of the National Heat and Mass Transfer Conference
, Bombay, Vol. 1, India, Paper No. HMT-11-75.
5.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “
Laminar Flow Forced Convection in Ducts
,”
Supplement 1 to Advances in Heat Transfer
,
T. F.
Irvine
, Jr.
, and
J. P.
Hartnett
, eds.,
Academic Press
,
New York
.
6.
Worsøe-Schmidt
,
P. M.
,
1967
, “
Heat Transfer in the Thermal Entrance Region of Circular Tubes and Annular Passages With Full Developed Laminar Flow
,”
Int. J. Heat Mass Transfer
,
10
(
4
), pp.
541
551
.10.1016/0017-9310(67)90173-1
7.
Kays
,
W. M.
,
1955
, “
Numerical Solutions for Laminar Flow Heat Transfer in a Circular Tube
,”
Trans. ASME
,
77
, pp.
1265
1274
.
8.
Grigull
,
U.
, and
Tratz
,
H.
,
1965
, “
Thermischer Einlauf in Ausgebildeter Laminarer Rohrströmung
,”
Int. J. Heat Mass Transfer
,
8
(
5
), pp.
669
678
.10.1016/0017-9310(65)90016-5
9.
Poulikakos
,
D.
,
1993
,
Conduction Heat Transfer
,
Prentice Hall
,
Englewood Cliffs, NJ
.
10.
ÖZişIk
,
M. N.
,
1993
,
Heat Conduction
, 2nd ed.,
Wiley
,
New York
.
11.
Luikov
,
A. V.
,
1968
,
Analytical Heat Diffusion Theory
,
Academic Press
,
London
.
12.
Rothe
,
E. H.
,
1930
, “
Zweidimensionale Parabolische Randwertaufgaben Als Grenzfall Eindimensionaler Randwertaufgaben
,”
Math. Anal.
,
102
(
1
), pp.
650
670
.10.1007/BF01782368
13.
Rektorys
,
K.
,
1982
,
The Method of Discretization in Time and Partial Differential Equations
,
D. Reidel Publishing
,
Dordrecht, The Netherlands
.
14.
Chapra
,
S. C.
, and
Canale
,
R. P.
,
2014
,
Numerical Methods for Engineers
, 7th ed.,
McGraw-Hill
,
New York
.
15.
Carlitz
,
L.
,
1968
, “
The Generalized Hypergeometric Differential Equation
,”
Duke Math. J.
,
35
(
4
), pp.
753
759
.10.1215/S0012-7094-68-03579-5
16.
Campo
,
A.
, and
Garza
,
J.
,
2014
, “
Transversal Method of Lines (TMOL) for Unsteady Heat Conduction With Uniform Surface Heat Flux
,”
ASME J. Heat Transfer
,
136
, p.
111302
.10.1115/1.4028082
17.
M.
Abramowitz
, and
I. A.
Stegun
, eds.,
1972
, “
Confluent Hypergeometric Functions
,”
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
, 9th ed.,
Dover
,
New York
, Chap. 13.
You do not currently have access to this content.