Abstract

New generalized correlations for predicting the average fanning friction factor f and average Nusselt number Nu for laminar flow in plain plate-fin compact cores of rectangular cross section are presented. These are based on extended experimental data, as well as three-dimensional computational simulations, obtained for a broad range of fin density and geometrical attributes. The results indicate that while the fully developed forced convection scales only with the interfin channel cross-sectional ratio α (fin spacing by fin height), the entrance region hydrodynamic and thermal performance is additionally a function of the fin-core length L, flow Reynolds number Re, and fluid Prandtl number Pr. The developing flow and convection is further shown to scale as: (fRe)(L/dhRe)1/2, and Nu (L/dhRe)1/2Pr1/3ϕ(α), where f, Re, and Nu are all based on the hydraulic diameter dh of the interfin flow channel. Generalized correlations for both (fRe) and Nu are developed by the corresponding scaling of the forced convection behavior and asymptotic matching of the entrance or developing flow (short fin-core flow length) and the fully developed flow (large fin-core flow length) region performance. Finally, the predictions from these correlations are found to be within ±15% of all available experimental data for air, water, and glycol (0.71 ≤ Pr ≤ 10), and fin cores with 0 < α ≤ 1.

References

1.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
2.
Kraus
,
A. D.
,
Aziz
,
A.
, and
Welty
,
J.
,
2001
,
Extended Surface Heat Transfer
,
Wiley
,
New York
.
3.
Manglik
,
R. M.
,
2003
, “
Heat Transfer Enhancement
,”
Heat Transfer Handbook
,
A.
Bejan
, and
A. D.
Kraus
, eds.,
Wiley
,
Hoboken, NJ
, Ch. 14.
4.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.
5.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2004
, “
Enhanced Heat and Mass Transfer in the New Millennium: A Review of the 2001 Literature
,”
J. Enhanced Heat Transfer
,
11
(
2
), pp.
87
118
.10.1615/JEnhHeatTransf.v11.i2.10
6.
Bergles
,
A. E.
, and
Manglik
,
R. M.
,
2013
, “
Current Progress and New Developments in Enhanced Heat and Mass Transfer
,”
J. Enhanced Heat Transfer
,
20
(
1
), pp.
1
15
.10.1615/JEnhHeatTransf.2013006989
7.
Harper
,
D. R.
, and
Brown
,
W. B.
,
1922
, “
Mathematical Equations for Heat Conduction in the Fins of Air Cooled Engines
,”
National Advisory Committee on Aeronautics
,
Washington, DC
, NACA Report No. 158.
8.
London
,
A. L.
, and
Brief
,
A.
,
1980
, “
History of Compact Heat Exchanger Technology
,”
Compact Heat Exchangers—History, Technological Advancement and Mechanical Design Problems
, Vol.
HTD-10
,
ASME
,
New York
, pp.
1
4
.
9.
London
,
A. L.
, and
Ferguson
,
C. K.
,
1949
, “
Test Results of High-Performance and Heat-Exchanger Surfaces Used in Aircraft Intercoolers and Their Significance for Gas-Turbine Regenerator Design
,”
Trans. Am. Soc. Mech. Eng.
,
71
(
1
), pp.
17
26
.
10.
London
,
A. L.
, and
Kays
,
W. M.
,
1950
, “
The Gas-Turbine Regenerator - The Use of Compact Heat-Transfer Surfaces
,”
Trans. Am. Soc. Mech. Eng.
,
72
, pp.
611
621
.
11.
Kays
,
W. M.
,
London
,
A. L.
, and
Johnson
,
D. W.
,
1951
,
Gas Turbine Plant Heat Exchangers (Basic Heat Transfer and Flow Friction Data)
,
ASME
,
New York
.
12.
Garimella
,
S.
,
Dowling
,
W. J.
,
Van Der Veen
,
M.
, and
Killion
,
J. D.
,
2001
, “
The Effect of Simultaneously Developing Flow and Heat Transfer in Rectangular Tubes
,”
Heat Transfer Eng.
,
22
(
6
), pp.
12
25
.10.1080/014576301317048406
13.
Agostini
,
B.
,
Watel
,
B.
,
Bontemps
,
A.
, and
Thonon
,
B.
,
2002
, “
Friction Factor and Heat Transfer Coefficient of R134a Liquid Flow in Mini-Channels
,”
Appl. Therm. Eng.
,
22
(
16
), pp.
1821
1834
.10.1016/S1359-4311(02)00108-4
14.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1073
1083
.10.1016/j.ijthermalsci.2006.01.016
15.
Caney
,
N.
,
Marty
,
P.
, and
Bigot
,
J.
,
2007
, “
Friction Lossess and Heat Transfer of Single-Phase Flow in a Mini-Channel
,”
Appl. Therm. Eng.
,
27
(
10
), pp.
1715
1721
.10.1016/j.applthermaleng.2006.07.019
16.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2004
, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
54
61
.10.1115/1.1643752
17.
O'Donovan
,
A.
, and
Grimes
,
R.
,
2014
, “
A Theoretical and Experimental Investigation Into the Thermodynamic Performance of a 50 MW Power Plant With a Novel Modular Air-Cooled Condenser
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
119
129
.10.1016/j.applthermaleng.2014.06.045
18.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset-Strip-Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
.10.1016/0894-1777(94)00096-Q
19.
Manglik
,
R. M.
,
Huzayyin
,
O. A.
, and
Jog
,
M. A.
,
2011
, “
Fin Effects in Flow Channels of Plate-Fin Compact Heat Exchanger Cores
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041004
.10.1115/1.4004844
20.
Kakaç
,
S.
,
Bergles
,
A. E.
, and
Mayinger
,
F.
,
1981
,
Heat Exchangers: Thermal-Hydraulic Fundamentals and Design
,
Hemisphere
,
New York
.
21.
Kreith
,
F.
, and
Manglik
,
R. M.
,
2018
,
Principles of Heat Transfer 8e
,
Cengage Learning
,
Boston, MA
.
22.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “
Laminar Flow Forced Convection in Ducts
,”
Advances in Heat Transfer
, Supplement 1, T
. F.
Irvine
, and
J.P.
Hartnett
, eds.,
Academic Press
,
New York
.
23.
Prusa
,
J.
, and
Manglik
,
R. M.
,
1994
, “
Asymptotic and Numerical Solutions for Thermally Developing Flows of Newtonian and non-Newtonian Fluids in Circular Tubes
,”
Numer. Heat Transfer
,
26
(
2
), pp.
199
217
.10.1080/10407789408955988
24.
White
,
F. M.
,
2016
,
Fluid Mechanics 8e
,
McGraw-Hill
,
New York
.
25.
Bejan
,
A.
,
2004
,
Convection Heat Transfer 3e
,
Wiley
,
Hoboken, NJ
.
26.
Hwang
,
C.
, and
Fan
,
L.
,
1964
, “
Finite Difference Analysis of Forced-Convection Heat Transfer in Entrance Region of a Flat Rectangular Duct
,”
Appl. Sci. Res., Sect. A
,
13
(
1
), pp.
401
422
.10.1007/BF00382066
27.
Wibulswas
,
P.
,
1966
, “
Laminar-Flow Heat-Transfer in Non-Circular Ducts
,” Ph.D. thesis,
University of London
,
London
.
28.
Curr
,
R. M.
,
Sharma
,
D.
, and
Tatchell
,
D. G.
,
1972
, “
Numerical Predictions of Some Three-Dimensional Boundary Layers in Ducts
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
2
), pp.
143
158
.10.1016/0045-7825(72)90001-1
29.
Manglik
,
R. M.
, and
Prusa
,
J.
,
1995
, “
Viscous Dissipation in non-Newtonian Flows: Implications for the Nusselt Number
,”
J. Thermophys. Heat Transfer
,
9
(
4
), pp.
733
742
.10.2514/3.732
30.
Shapiro
,
A.
,
Siegel
,
R.
, and
Kline
,
S.
,
1954
,
Friction Factor in the Laminar Entry Region of a Smooth Tube, Proc. of U.S. Second National Congress of Applied Mechanics
,
ASME
,
New York
, pp.
733
741
.
31.
Shah
,
R. K.
,
1978
, “
A Correlation for Laminar Hydrodynamic Entry Length Solutions for Circular and Noncircular Ducts
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
177
179
.10.1115/1.3448626
32.
Sparrow
,
E. M.
,
1955
, “
Analysis of Laminar Forced-Convection Heat Transfer in Entrance Region of Flat Rectangular Ducts
,”
National Advisory Committee on Aeronautics
,
Washington, DC
, NACA Report No. 3331.
33.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(
6
), pp.
1121
1128
.10.1002/aic.690180606
34.
Manglik
,
R. M.
,
2018
, “
Enhancement of Convective Heat Transfer
,”
Handbook of Thermal Science and Engineering
, Vol.
1
,
Springer International Publishing
,
F. A.
Kulacki
, ed.,
Cham, Switzerland
, pp.
447
477
.
35.
Webb
,
R. L.
,
2006
, “
Entrance and Exit Losses for Developing Flow in Parallel Plate Channels
,”
Heat Transfer Eng.
,
27
(
10
), pp.
30
35
.10.1080/01457630600904650
36.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
, 2nd ed.,
University Science Books
,
Sausalito, CA
.
37.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory 7e
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.