Abstract

A direct numerical simulation of rotating Rayleigh–Bénard convection (RBC) for different fluids (Pr=0.015,0.7,1,7,20, and 100) in a cylindrical cell of aspect ratio Γ=0.5 is carried out in this work. The effect of rotation on the heat transfer rate, flow structures, their associated dynamics, and influence on the boundary layers are investigated. The Rayleigh number is fixed to Ra=106 and the rotation rates are varied for a wide range, starting from no rotation (Ro) to high rotation rates (Ro0.01). For all the Prandtl numbers (Pr=0.015–100), a reduction in heat transfer with increase in rotation is observed. However, for Pr=7 and 20, a marginal increase of the Nusselt number for low rotation rates is obtained, which is attributed to the change in the flow structure from quadrupolar to dipolar state. The change in flow structure is associated with the statistical behavior of the boundary layers. As the flow makes a transition from quadrupolar to dipolar state, a reduction in the thermal boundary layer thickness is observed. At higher rotation rates, the thermal boundary layer thickness shows a power law variation with the rotation rate. The power law exponent is close to unity for moderate Pr, while it reduces for both lower and higher Pr. At extremely high rotation rates, the flow makes a transition to the conduction state. The critical rotation rate (1/Roc) for which transition to the conduction state is observed depends on the Prandtl number according to 1/RocPr0.5.

References

1.
King
,
E. M.
, and
Aurnou
,
J. M.
,
2013
, “
Turbulent Convection in Liquid Metal With and Without Rotation
,”
Proc. Natl. Acad. Sci. U.S.A
,
110
(
17
), pp.
6688
6693
.10.1073/pnas.1217553110
2.
Zhong
,
J. Q.
, and
Ahlers
,
G.
,
2010
, “
Heat Transport and the Large-Scale Circulation in Rotating Turbulent Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
665
, pp.
300
333
.10.1017/S002211201000399X
3.
Zhong
,
J. Q.
,
Stevens
,
R. J. A. M.
,
Clercx
,
H. J. H.
,
Verzicco
,
R.
,
Lohse
,
D.
, and
Ahlers
,
G.
,
2009
, “
Prandtl-, Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotating Rayleigh–Bénard Convection
,”
Phys. Rev. Lett.
,
102
, p.
044502
.10.1103/PhysRevLett.102.044502
4.
Kunnen
,
R. P. J.
,
Geurtz
,
B. J.
, and
Clercx
,
H. J. H.
,
2006
, “
Direct Numerical Simulation of Turbulent Rotating Rayleigh–Bénard Convection
,” Direct and Large-Eddy Simulation VI, Vol.
10
, Springer, Dordrecht, The Netherlands, pp.
233
240
.
5.
Roche
,
P. E.
,
Castaing
,
B.
,
Chabaud
,
B.
, and
Hebral
,
B.
,
2002
, “
Prandtl and Rayleigh Numbers Dependences in Rayleigh–Bénard Convection
,”
Europhys. Lett.
,
58
(
5
), pp.
693
698
.10.1209/epl/i2002-00405-1
6.
Chilla
,
F.
,
Rastello
,
M.
,
Chaumat
,
S.
, and
Castaing
,
B.
,
2004
, “
Long Relaxation Times and Tilt Sensitivity in Rayleigh–Bénard Turbulence
,”
Eur. Phys. J. B
,
40
, pp.
223
227
.10.1140/epjb/e2004-00261-3
7.
Nikolaenko
,
A.
,
Brown
,
E.
,
Funfschilling
,
D.
, and
Ahlers
,
G.
,
2005
, “
Heat Transport by Turbulent Rayleigh–Bénard Convection in Cylindrical Cells With Aspect Ratio One and Less
,”
J. Fluid Mech.
,
523
, pp.
251
260
.10.1017/S0022112004002289
8.
Stringano
,
G.
, and
Verzicco
,
R.
,
2006
, “
Mean Flow Structure in Thermal Convection in a Cylindrical Cell of Aspect Ratio One Half
,”
J. Fluid Mech.
,
548
(
1
), pp.
1
16
.10.1017/S0022112005007378
9.
Xi
,
H.-D.
,
Zhang
,
Y.-B.
,
Hao
,
J.-T.
, and
Xia
,
K.-Q.
,
2016
, “
Higher-Order Flow Modes in Turbulent Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
805
, pp.
31
51
.10.1017/jfm.2016.572
10.
Weiss
,
S.
, and
Ahlers
,
G.
,
2011
, “
Turbulent Rayleigh–Bénard Convection in a Cylindrical Container With Aspect Ratio Γ=0.5 and Prandtl Number Pr =4.38
,”
J. Fluid Mech.
,
676
, pp.
5
40
.10.1017/S0022112010005963
11.
Weiss
,
S.
, and
Ahlers
,
G.
,
2011
, “
The Large-Scale Flow Structure in Turbulent Rotating Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
688
, pp.
461
492
.10.1017/jfm.2011.392
12.
Verzicco
,
R.
, and
Camussi
,
R.
,
1999
, “
Prandtl Number Effects in Convective Turbulence
,”
J. Fluid Mech.
,
383
, pp.
55
73
.10.1017/S0022112098003619
13.
Stevens
,
R. J. A. M.
,
Clercx
,
H. J. H.
, and
Lohse
,
D.
,
2010
, “
Optimal Prandtl Number for Heat Transfer in Rotating Rayleigh–Bénard Convection
,”
New J. Phys
,
12
(
7
), pp.
359
364
.
14.
Kunnen
,
R. P. J.
,
Clercx
,
H. J. H.
, and
Geurts
,
B. J.
,
2006
, “
Heat Flux Intensification by Vortical Flow Localization in Rotating Convection
,”
Phys. Rev. E
,
74
(
5
), p.
056306
.10.1103/PhysRevE.74.056306
15.
van der Poel
,
E. P.
,
Stevens
,
R. J. A. M.
, and
Lohse
,
D.
,
2011
, “
Connecting Flow Structures and Heat Flux in Turbulent Rayleigh–Bénard Convection
,”
Phys. Rev. E
,
84
(
4
), p.
045303
.10.1103/PhysRevE.84.045303
16.
Weiss
,
S.
,
Wei
,
P.
, and
Ahlers
,
G.
,
2016
, “
Heat-Transport Enhancement in Rotating Turbulent Rayleigh–Bénard Convection
,”
Phys. Rev. E
,
93
(
4
), p.
043102
.10.1103/PhysRevE.93.043102
17.
Animasaun
,
I. L.
, and
Pop
,
I.
,
2017
, “
Numerical Exploration of a Non-Newtonian Carreau Fluid Flow Driven by Catalytic Surface Reactions on an Upper Horizontal Surface of a Paraboloid of Revolution, Buoyancy and Stretching at the Free Stream
,”
Alexandria Eng. J.
,
56
(
4
), pp.
647
568
.10.1016/j.aej.2017.07.005
18.
Motsa
,
S. S.
, and
Animasaun
,
I. L.
,
2018
, “
Bivariate Spectral Quasi-Linearisation Exploration of Heat Transfer in the Boundary Layer Flow of Micropolar Fluid With Strongly Concentrated Particles Over a Surface at Absolute Zero Due to Impulsive
,”
Int. J. Comput. Sci. Math.
,
9
(
5
), pp.
455
473
.10.1504/IJCSM.2018.095499
19.
Animasaun
,
I. L.
, and
Sandeep
,
N.
,
2016
, “
Buoyancy Induced Model for the Flow of 36 nm Alumina-Water Nanofluid Along Upper Horizontal Surface of a Paraboloid of Revolution With Variable Thermal Conductivity and Viscosity
,”
Powder Technol.
,
301
, pp.
858
867
.10.1016/j.powtec.2016.07.023
20.
Motsa
,
S. S.
, and
Animasaun
,
I. L.
,
2016
, “
Unsteady Boundary Layer Flow Over a Vertical Surface Due to Impulsive and Buoyancy in the Presence of Thermal-Diffusion and Diffusion-Thermo Using Bivariate Spectral Relaxation Method
,”
J. Appl. Fluid Mech.
,
9
(5), pp.
2605
2619
.
21.
Peter
,
S.
, and
De
,
A. K.
,
2016
, “
Wake Instability Modes for Forced Transverse Oscillation of a Sphere
,”
Ocean Eng.
,
115
, pp.
48
59
.10.1016/j.oceaneng.2016.01.014
22.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer
, Berlin, Germany.
23.
Kooij
,
G. L.
,
Botchev
,
M. A.
, and
Geurts
,
B. J.
,
2015
, “
Direct Numerical Simulation of Nusselt Number Scaling in Rotating Rayleigh–Bénard Convection
,”
Int. J. Heat Fluid Flow
,
55
, pp.
26
33
.10.1016/j.ijheatfluidflow.2015.05.016
24.
Verzicco
,
R.
, and
Camussi
,
R.
,
1997
, “
Transitional Regimes of low-Prandtl Thermal Convection in a Cylindrical Cell
,”
Phys. Fluids
,
9
(
5
), pp.
1287
1294
.10.1063/1.869244
25.
Shraiman
,
B. I.
, and
Siggia
,
E. D.
,
1990
, “
Heat Transport in High-Rayleigh Number Convection
,”
Phys. Rev. A
,
42
(
6
), pp.
3650
3653
.10.1103/PhysRevA.42.3650
26.
Stevens
,
R. J. A. M.
,
Verzicco
,
R.
, and
Lohse
,
D.
,
2010
, “
Radial Boundary Layer Structure and Nusselt Number in Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
643
, pp.
495
507
.10.1017/S0022112009992461
27.
Mishra
,
P. K.
,
De
,
A. K.
,
Verma
,
M. K.
, and
Eswaran
,
V.
,
2011
, “
Dynamics of Reorientations and Reversals of Large-Scale Flow in Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
668
, pp.
480
499
.10.1017/S0022112010004830
28.
Oresta
,
P.
,
Stringano
,
G.
, and
Verzicco
,
R.
,
2007
, “
Transitional Regimes and Rotation Effects in Rayleigh–Bénard Convection in a Slender Cylindrical Cell
,”
Eur. J. Mech. B Fluids
,
26
(
1
), pp.
1
14
.10.1016/j.euromechflu.2006.04.006
29.
Li
,
Y. R.
,
Ouyang
,
Y. Q.
,
Peng
,
L.
, and
Wu
,
S. Y.
,
2012
, “
Direct Numerical Simulation of Rayleigh Bénard Convection in a Cylindrical Container of Aspect Ratio 1 for Moderate Prandtl Number Fluid
,”
Phys. Fluids
,
24
(
7
), p. 074103.10.1063/1.4731296
30.
Silano
,
G.
,
Sreenivasan
,
K. R.
, and
Verzicco
,
R.
,
2010
, “
Numerical Simulations of Rayleigh–Bénard Convection for Prrandtl Numbers Between 10– 1 and 104 and Rayleigh Numbers Between 105 and 109
,”
J. Fluid Mech.
,
662
, pp.
409
446
.10.1017/S0022112010003290
31.
Ning
,
L.
, and
Ecke
,
R.
,
1993
, “
Rotating Rayleigh–Bénard Convection: Aspect-Ratio Dependence of the Initial Bifurcations
,”
Phys. Rev. E
,
47
(
5
), pp.
3326
3333
.10.1103/PhysRevE.47.3326
32.
Taylor
,
G. I.
,
1923
, “
Experiments on the Motion of Solid Bodies in Rotating Fluids
,”
Proc. R. Soc. London A
,
104
(
725
), pp.
213
218
.10.1098/rspa.1923.0103
33.
Proudman
,
J.
,
1916
, “
On the Motion of Solids in a Liquid Possessing Vorticity
,”
Proc. R. Soc. London A
,
92
(
642
), pp.
408
424
.10.1098/rspa.1916.0026
34.
Kunnen
,
R. P. J.
,
Geurts
,
B. J.
, and
Clercx
,
H. J. H.
,
2009
, “
Turbulence Statistics and Energy Budget in Rotating Rayleigh–Bénard Convection
,”
Eur. J. Mech. B Fluids
,
28
(
4
), pp.
578
589
.10.1016/j.euromechflu.2009.01.003
35.
Breuer
,
M.
,
Wessling
,
S.
,
Schmalzl
,
J.
, and
Hansen
,
U.
,
2004
, “
Effect of Inertia in Rayleigh–Bénard Convection
,”
Phys. Rev. E
,
69
(
2
), p.
026302
.10.1103/PhysRevE.69.026302
36.
Rossby
,
H. T.
,
1969
, “
A Study of Bénard Convection With and Without Rotation
,”
J. Fluid Mech.
,
36
(
2
), pp.
309
335
.10.1017/S0022112069001674
37.
Stevens
,
R. J. A. M.
,
Clercx
,
H. J. H.
, and
Lohse
,
D.
,
2013
, “
Heat Transport and Flow Structures in Rotating Rayleigh–Bénard Convection
,”
Eur. J. Mech. B Fluids
,
40
, pp.
41
49
.10.1016/j.euromechflu.2013.01.004
38.
Horn
,
S.
, and
Shishkina
,
O.
,
2015
, “
Toroidal and Poloidal Energy in Rotating Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
762
, pp.
232
255
.10.1017/jfm.2014.652
39.
Grossmann
,
S.
, and
Lohse
,
D.
,
2000
, “
Scaling in Thermal Convection: A Unifying Theory
,”
J. Fluid Mech.
,
407
, pp.
27
56
.10.1017/S0022112099007545
40.
Grossmann
,
S.
, and
Lohse
,
D.
,
2001
, “
Thermal Convection for Large Prandtl Numbers
,”
Phys. Rev. Lett.
,
86
(
15
), pp.
3316
3319
.10.1103/PhysRevLett.86.3316
41.
Grossmann
,
S.
, and
Lohse
,
D.
,
2002
, “
Prandtl and Rayleigh Number Dependence of the Reynolds Number in Turbulent Thermal Convection
,”
Phys. Rev. E
,
66
(
1
), p.
016305
.10.1103/PhysRevE.66.016305
42.
Lui
,
S. L.
, and
Xia
,
K. Q.
,
1998
, “
Spatial Structure of the Thermal Boundary Layer in Turbulent Convection
,”
Phys. Rev. E
,
57
(
5
), pp.
5494
5503
.10.1103/PhysRevE.57.5494
43.
Verzicco
,
R.
, and
Camussi
,
R.
,
2003
, “
Numerical Experiments on Strongly Turbulent Thermal Convection in a Slender Cylindrical Cell
,”
J. Fluid Mech.
,
477
, pp.
19
49
.10.1017/S0022112002003063
You do not currently have access to this content.