In hot-forming die-quenching (HFDQ) boron manganese steel blanks are heated within a roller hearth furnace, and then simultaneously quenched and formed into fully martensitic body-in-white components. Industry needs models that can predict the instantaneous temperature and austenite phase fraction within the roller furnace to diagnose problems (e.g., incomplete austenitization), forecast costs, and optimize process settings. This paper introduces a thermometallurgical model for Al–Si coated 22MnB5, consisting of a coupled heat transfer and austenitization submodels. Two candidate austenitization submodels are considered: an empirical first-order model and a model based on the detailed austenitization kinetics. In the case of the first-order model, a detailed Monte Carlo procedure is used to construct 95% credibility intervals for the blank temperature and austenite phase fraction that accounts for uncertainties in the furnace temperature and model parameters. The models are first assessed using temperature and austenite phase fractions from Al–Si coated 22MnB5 coupons heated in a laboratory-scale muffle furnace, and then used to simulate austenitization of patched blanks within an industrial roller hearth furnace. The results show that the empirical first-order model provides a more robust estimate of austenite phase fraction compared to the detailed model.

References

1.
Karbasian
,
H.
, and
Tekkaya
,
A. E.
,
2010
, “
A Review on Hot Stamping
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2103
2118
.
2.
Di Ciano
,
M.
,
Field
,
N.
,
Wells
,
M.
, and
Daun
,
K.
,
2018
, “
Development of an Austenitization Kinetics Model for 22MnB5 Steel
,”
J. Mater. Eng. Perform.
,
27
(
4
), pp.
1792
1802
.
3.
Jhajj
,
K.
,
Slezak
,
S.
, and
Daun
,
K.
,
2015
, “
Inferring the Specific Heat of an Ultra High Strength Steel During the Heating Stage of Hot Forming Die Quenching, Through Inverse Analysis
,”
Appl. Therm. Eng.
,
83
, pp.
98
107
.
4.
Heng
,
V.
,
Ganesh
,
H.
,
Dulaney
,
A.
,
Kurzawski
,
A.
,
Baldea
,
M.
,
Ezekoye
,
O.
, and
Edgar
,
T.
,
2017
, “
Energy-Oriented Modeling and Optimization of a Heat Treating Furnace
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(6), p. 061014.
5.
Ganesh
,
H. S.
,
Edgar
,
T. F.
, and
Baldea
,
M.
,
2017
, “
Modeling, Optimization and Control of an Austenitization Furnace for Achieving Target Product Toughness and Minimizing Energy Use
,”
J. Process Control
, (in press).
6.
Twynstra
,
M. G.
,
Daun
,
K. J.
,
Caron
,
E.
,
Adam
,
N.
, and
Womack
,
D.
,
2013
, “
Modelling and Optimization of a Batch Furnace for Hot Stamping
,”
ASME
Paper No. HT2013-17248.
7.
Watt
,
D.
,
Coon
,
L.
,
Bibby
,
M.
,
Goldak
,
J.
, and
Henwood
,
C.
,
1988
, “
An Algorithm for Modelling Microstructural Development in Weld Heat-Affected Zones (Part A) Reaction Kinetics
,”
Acta Metall.
,
36
(
11
), pp.
3029
3035
.
8.
Krielaart
,
G.
,
Brakman
,
C.
, and
Van Der Zwaag
,
S.
,
1996
, “
Analysis of Phase Transformation in Fe–C Alloys Using Differential Scanning Calorimetry
,”
J. Mater. Sci.
,
31
(
6
), pp.
1501
1508
.
9.
Tonne
,
J.
,
Clobes
,
J.
,
Alsmann
,
M.
,
Ademaj
,
A.
,
Mischka
,
M.
,
Morgenroth
,
W.
,
Becker
,
H.
, and
Stursberg
,
O.
,
2013
, “
Model-Based Optimization of Furnace Temperature Profiles With Regard to Economic and Ecological Aspects in Hot Stamping of 22MnB5
,”
Fourth International Conference: Proceedings Hot Sheet Metal Forming of High-Performance Steel
, Luleå, Sweden, June 9–12.
10.
Datta
,
D.
, and
Gokhale
,
A.
,
1981
, “
Austenitization Kinetics of Pearlite and Ferrite Aggregates in a Low Carbon Steel Containing 0.15 wt Pct C
,”
Metall. Mater. Trans. A
,
12
(
3
), pp.
443
450
.
11.
Caballero
,
F. G.
,
Capdevila
,
C.
, and
De Andrés
,
C. G.
,
2002
, “
Modelling of Kinetics and Dilatometric Behaviour of Austenite Formation in a Low-Carbon Steel With a Ferrite Plus Pearlite Initial Microstructure
,”
J. Mater. Sci.
,
37
(
16
), pp.
3533
3540
.
12.
Li
,
N.
,
Lin
,
J.
,
Balint
,
D.
, and
Dean
,
T.
,
2016
, “
Modelling of Austenite Formation During Heating in Boron Steel Hot Stamping Processes
,”
J. Mater. Process. Technol.
,
237
, pp.
394
401
.
13.
Arcelor-Mittal
, 2019, “
Properties of Usibor® 1500 P
,” ArcelorMittal, Luxembourg.
14.
Shi
,
C. J.
,
Daun
,
K. J.
, and
Wells
,
M. A.
,
2015
, “
Spectral Emissivity Characteristics of the Usibor® 1500P Steel During Austenitization in Argon and Air Atmospheres
,”
Int. J. Heat Mass Transfer
,
91
, pp.
818
828
.
15.
Radziemska
,
E.
, and
Lewandowski
,
W.
,
2001
, “
Heat Transfer by Natural Convection From an Isothermal Downward-Facing Round Plate in Unlimited Space
,”
Appl. Energy
,
68
(
4
), pp.
347
366
.
16.
Bergman
,
T.
,
Lavine
,
A.
,
Incropera
,
F.
, and
Dewitt
,
D.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
Hoboken, NJ
.
17.
Verma
,
M.
,
Culham
,
J.
,
Di Ciano
,
M.
, and
Daun
,
K.
,
2017
, “
Development of a Thermo-Metallurgical Model to Predict Heating and Austenitization of 22MnB5 for Hot Forming Die Quenching
,”
ASME
Paper No. IMECE2017-71013.
18.
Callister
,
W.
, 2005,
Fundamentals of Materials Science and Engineering
, 2nd ed.,
Wiley
,
London
.
19.
Roosz
,
A.
,
Gracsi
,
Z.
, and
Fuchs
,
E.
,
1983
, “
Isothermal Formation of Austenite in Eutectoid Plain Carbon Steel
,”
Acta Metall.
,
31
(
4
), pp.
509
517
.
20.
Speich
,
G.
,
Demarest
,
V.
, and
Miller
,
R.
,
1981
, “
Formation of Austenite During Intercritical Annealing of Dual-Phase Steels
,”
Metall. Mater. Trans. A
,
12
(
8
), pp.
1419
1428
.
21.
Huang
,
J.
,
Poole
,
W.
, and
Militzer
,
M.
,
2004
, “
Austenite Formation During Intercritical Annealing
,”
Metall. Mater. Trans. A
,
35
(
11
), pp.
3363
3375
.
22.
Liu
,
F.
,
Sommer
,
F.
,
Bos
,
C.
, and
Mittemeijer
,
E.
,
2007
, “
Analysis of Solid State Phase Transformation Kinetics: Models and Recipes
,”
Int. Mater. Rev.
,
52
(
4
), pp.
193
212
.
23.
ASTM International
,
2015
, “
Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations
,” American Society for Testing and Materials, West Conshohocken, PA, Standard No. A1033-10(2015).
24.
Yan
,
H.
,
Ciano
,
M. D.
,
Verma
,
M.
, and
Daun
,
K. J.
,
2018
, “
Intercritical Annealing of 22MnB5 for Hot Forming Die Quenching
,” International Deep Drawing Research Group 37th Annual Conference, Waterloo, ON, Canada, June 3–7.
25.
Grauer
,
S.
,
Caron
,
E.
,
Chester
,
N.
,
Wells
,
M.
, and
Daun
,
K.
,
2015
, “
Investigation of Melting in the Al-Si Coating of a Boron Steel Sheet by Differential Scanning Calorimetry
,”
J. Mater. Process. Technol.
,
216
, pp.
89
94
.
You do not currently have access to this content.