Abstract

The effect of sidewall conductance on Nusselt number for the Rayleigh-Bénard convection is examined by performing nearly identical sets of experiments with sidewalls made of three different materials. These experimental results are utilized to extrapolate and estimate the Nusselt number for an ideal zero-thermal-conductivity sidewall case, which is the case when the sidewalls are perfectly insulating. A semi-analytical model is proposed, based on the concept of extended surfaces, to compute the discrepancy in Nusselt number caused by the presence of finite thermal conductance of the sidewalls. The predictions obtained using this model are found to be in good agreement with the corresponding experimentally determined values.

References

1.
Goldstein
,
R. J.
, and
Tokuda
,
S.
,
1980
, “
Heat Transfer by Thermal Convection at High Rayleigh Numbers
,”
Int. J. Heat Mass Transfer
,
23
(
5
), pp.
738
740
.10.1016/0017-9310(80)90022-8
2.
Castaing
,
B.
,
Gunaratne
,
G.
,
Heslot
,
F.
,
Kadanoff
,
L.
,
Libchaber
,
A.
,
Thomae
,
S.
,
Wu
,
X. Z.
,
Zaleski
,
S.
, and
Zanetti
,
G.
,
1989
, “
Scaling of Hard Thermal Turbulence in Rayleigh-Bénard Convection
,”
J. Fluid Mech.
,
204
(
1
), pp.
1
30
.10.1017/S0022112089001643
3.
Goldstein
,
R. J.
,
Chiang
,
H. D.
, and
See
,
D. L.
,
1990
, “
High Rayleigh-Number Convection in a Horizontal Enclosure
,”
J. Fluid Mech.
,
213
(
1
), pp.
111
126
.10.1017/S0022112090002245
4.
Wu
,
X. Z.
, and
Libchaber
,
A.
,
1992
, “
Scaling Relations in Thermal Turbulence: The Aspect-Ratio Dependence
,”
Phys. Rev. A
,
45
(
2
), p.
842
.10.1103/PhysRevA.45.842
5.
Belmonte
,
A.
,
Tilgner
,
A.
, and
Libchaber
,
A.
,
1994
, “
Temperature and Velocity Boundary Layers in Turbulent Convection
,”
Phys. Rev. E
,
50
(
1
), pp.
269
281
.10.1103/PhysRevE.50.269
6.
Ciliberto
,
S.
,
Cioni
,
S.
, and
Laroche
,
C.
,
1996
, “
Large-Scale Flow Properties of Turbulent Thermal Convection
,”
Phys. Rev. E
,
54
(
6
), pp.
R5901
R5904
.10.1103/PhysRevE.54.R5901
7.
Xu
,
X.
,
Bajaj
,
K. M.
, and
Ahlers
,
G.
,
2000
, “
Heat Transport in Turbulent Rayleigh-Bénard Convection
,”
Phys. Rev. Lett.
,
84
(
19
), p.
4357
.10.1103/PhysRevLett.84.4357
8.
Niemela
,
J. J.
,
Skrbek
,
L.
,
Sreenivasan
,
K. R.
, and
Donnelly
,
R. J.
,
2000
, “
Turbulent Convection at Very High Rayleigh Numbers
,”
Nature
,
404
(
6780
), pp.
837
840
.10.1038/35009036
9.
Chavanne
,
X.
,
Chilla
,
F.
,
Chabaud
,
B.
,
Castaing
,
B.
, and
Hebral
,
B.
,
2001
, “
Turbulent Rayleigh-Bénard Convection in Gaseous and Liquid He
,”
Phys. Fluids
,
13
(
5
), pp.
1300
1320
.10.1063/1.1355683
10.
Fleischer
,
A. S.
, and
Goldstein
,
R. J.
,
2002
, “
High-Rayleigh-Number Convection of Pressurized Gases in a Horizontal Enclosure
,”
J. Fluid Mech.
,
469
, pp.
1
12
.10.1017/S002211200200174X
11.
Xia
,
K. Q.
,
Lam
,
S.
, and
Zhou
,
S. Q.
,
2002
, “
Heat-Flux Measurement in High-Prandtl-Number Turbulent Rayleigh-Bénard Convection
,”
Phys. Rev. Lett.
,
88
(
6
), p.
064501
.10.1103/PhysRevLett.88.064501
12.
Niemela
,
J. J.
, and
Sreenivasan
,
K. R.
,
2003
, “
Confined Turbulent Convection
,”
J. Fluid Mech.
,
481
, pp.
355
384
.10.1017/S0022112003004087
13.
Nikolaenko
,
A.
,
Brown
,
E.
,
Funfschilling
,
D.
, and
Ahlers
,
G.
,
2005
, “
Heat Transport by Turbulent Rayleigh-Bénard Convection in Cylindrical Cells With Aspect Ratio One and Less
,”
J. Fluid Mech.
,
523
, pp.
251
260
.10.1017/S0022112004002289
14.
Niemela
,
J. J.
, and
Sreenivasan
,
K. R.
,
2006
, “
Turbulent Convection at High Rayleigh Numbers and Aspect Ratio 4
,”
J. Fluid Mech.
,
557
, pp.
411
422
.10.1017/S0022112006009669
15.
Urban
,
P.
,
Hanzelka
,
P.
,
Musilová
,
V.
,
Králík
,
T.
,
La Mantia
,
M.
,
Srnka
,
A.
, and
Skrbek
,
L.
,
2014
, “
Heat Transfer in Cryogenic Helium Gas by Turbulent Rayleigh-Bénard Convection in a Cylindrical Cell of Aspect Ratio 1
,”
New J. Phys.
,
16
(
5
), p.
053042
.10.1088/1367-2630/16/5/053042
16.
Chong
,
K. L.
, and
Xia
,
K. Q.
,
2016
, “
Exploring the Severely Confined Regime in Rayleigh-Bénard Convection
,”
J. Fluid Mech.
,
805
, p.
R4–1
.10.1017/jfm.2016.578
17.
Ahlers
,
G.
,
2000
, “
Effect of Sidewall Conductance on Heat-Transport Measurements for Turbulent Rayleigh-Bénard Convection
,”
Phys. Rev. E
,
63
(
1
), p.
0153031
.10.1103/PhysRevE.63.015303
18.
Roche
,
P. E.
,
Castaing
,
B.
,
Chabaud
,
B.
,
Hébral
,
B.
, and
Sommeria
,
J.
,
2001
, “
Side Wall Effects in Rayleigh-Bénard Experiments
,”
Eur. Phys. J. B
,
24
(
3
), pp.
405
408
.10.1007/s10051-001-8690-5
19.
Verzicco
,
R.
,
2002
, “
Sidewall Finite-Conductivity Effects in Confined Turbulent Thermal Convection
,”
J. Fluid Mech.
,
473
, pp.
201
210
.10.1017/S0022112002002501
20.
Madanan
,
U.
, and
Goldstein
,
R. J.
,
2018
, “
Prediction and Correction of Sidewall Conductance for Natural Convection in Horizontal Enclosures
,” 16th International Heat Transfer Conference (
IHTC
), Beijing, China, Aug. 10–15, pp. 2731–2740.10.1615/IHTC16.cov.021359
21.
Madanan
,
U.
, and
Goldstein
,
R. J.
,
2019
, “
Thermal Convection in Horizontal Rectangular Enclosures at Moderate Rayleigh Numbers: Effect of Sidewall Conductance and Aspect Ratio
,”
Int. J. Heat Mass Transfer
,
136
, pp.
178
185
.10.1016/j.ijheatmasstransfer.2019.02.076
22.
Madanan
,
U.
, and
Goldstein
,
R. J.
,
2019
, “
Experimental Investigation on Very-high-Rayleigh-Number Thermal Convection in Tilted Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
,
139
, pp.
121
129
.10.1016/j.ijheatmasstransfer.2019.05.011
23.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.