Air-side heat transfer and flow friction characteristics of four different fin patterns suitable for flat tube bank fin heat exchangers are investigated experimentally. The fin patterns are the fin with six dimples, the fin with nine dimples, the double louvered fin, and the fin with delta-winglet vortex generators (VGs). The corresponding plain fins (plain fin I and plain fin II) are used as the references for evaluating the thermal performances of these fin patterns under identical pump power constraint. The performance of the fin with the six dimples is better than that with nine dimples. The performance of the fin with delta-winglet VGs is better than that of the double louvered fin, and the performance of the latter is better than that of the fins with six or nine dimples. In the tested Reynolds number range, the heat transfer enhancement performance factor of the fin with six dimples, the fin with nine dimples, the double louvered fin, and the fin with delta-winglet VGs is 1.2–1.3, 1.1–1.2, 1.3–1.6, and 1.4–1.6, respectively. The correlations of Nusselt number and friction factor with Reynolds number for the fins with six/nine dimples and the double louvered fin are obtained. These correlations are useful to design flat tube bank fin heat exchangers.

References

1.
McQuiston
,
F. C.
,
1978
, “
Correlation of Heat, Mass and Momentum Transport Coefficients for Plate-Fin-Tube Heat Transfer Surfaces With Staggered Tubes
,”
ASHRAE Trans.
,
84
, pp.
294
308
.http://ishare.iask.sina.com.cn/f/25173471.html
2.
Wang
,
C. C.
,
Chi
,
K. Y.
, and
Chang
,
C. J.
,
2000
, “
Heat Transfer and Friction Characteristics of Plate Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
43
(15), pp.
2693
2700
.
3.
Jeanette
,
C. I.
,
Angela
,
W. D.
,
Florian
,
D.
, and
Arturo
,
P. V.
,
2015
, “
Numerically-Based Parametric Analysis of Plain Fin and Tube Compact Heat Exchangers
,”
Appl. Therm. Eng.
,
86
, pp.
1
13
.
4.
Xu
,
C.
,
Yang
,
L. J.
,
Li
,
L.
, and
Du
,
X. Z.
,
2015
, “
Experimental Study on Heat Transfer Performance Improvement of Wavy Finned Flat Tube
,”
Appl. Therm. Eng.
,
85
, pp.
80
88
.
5.
Lotfi
,
B.
,
Zeng
,
M.
,
Sunden
,
B.
, and
Wang
,
Q.
,
2014
, “
3D Numerical Investigation of Flow and Heat Transfer Characteristics in Smooth Wavy Fin-and-Elliptical Tube Heat Exchangers Using New Type Vortex Generators
,”
Energy
,
73
, pp.
233
257
.
6.
Gorman
,
J. M.
,
Carideo
,
M.
,
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2015
, “
Heat Transfer and Pressure Drop Comparison of Louver-and Plain-Finned Heat Exchangers Where One Fluid Passes Through Flattened Tubes
,”
Case Stud. Therm. Eng.
,
5
, pp.
122
126
.
7.
Vaisi
,
A.
,
Esmaeilpour
,
M.
, and
Taherian
,
H.
,
2011
, “
Experimental Investigation of Geometry Effects on the Performance of a Compact Louvered Heat Exchanger
,”
Appl. Therm. Eng.
,
31
(16), pp.
3337
3346
.
8.
Jang
,
J. Y.
, and
Chen
,
C. C.
,
2015
, “
Optimization of Louvered-Fin Heat Exchanger With Variable Louver Angles
,”
Appl. Therm. Eng.
,
91
, pp.
138
150
.
9.
Mao
,
J. N.
,
Chen
,
H. X.
,
Jia
,
H.
,
Wang
,
Y. Z.
, and
Hu
,
H. M.
,
2013
, “
Effect of Air-Side Flow Misdistributions on Thermal Hydraulic Performance of the Multi-Louvered Fin and Tube Heat Exchanger
,”
Int. J. Therm. Sci.
,
73
, pp.
46
57
.
10.
Dogan
,
B.
,
Altun
,
O.
,
Ugurlubilek
,
N.
,
Tosun
,
M.
,
Sarıçay
,
T.
, and
Erbay
,
L. B.
,
2015
, “
An Experimental Comparison of Two Multi-Louvered Fin Heat Exchangers With Different Numbers of Fin Rows
,”
Appl. Therm. Eng.
,
91
, pp.
270
278
.
11.
Karthik
,
P.
,
Kumaresan
,
V.
, and
Velraj
,
R.
,
2015
, “
Experimental and Parametric Studies of a Louvered Fin and Flat Tube Compact Heat Exchanger Using Computational Fluid Dynamics
,”
Alex. Eng. J.
,
54
(4), pp.
905
915
.
12.
Huisseune
,
H.
,
Joen
,
C. T.
,
Jaeger
,
P. D.
,
Ameel
,
B.
,
Schampheleire
,
S. D.
, and
Paepe
,
M. D.
,
2013
, “
Influence of the Louver and Delta-Winglet Geometry on the Thermal Hydraulic Performance of a Compound Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
57
(1), pp.
58
72
.
13.
Joen
,
C. T.
,
Huisseune
,
H.
,
Canière
,
H.
,
Steeman
,
H. J.
,
Willockx
,
A.
, and
Paepe
,
M. D.
,
2011
, “
Interaction Between Mean Flow and Thermo-Hydraulic Behavior in Inclined Louvered Fins
,”
Int. J. Heat Mass Transfer
,
54
(4), pp.
826
837
.
14.
Chu
,
P.
,
He
,
Y. L.
,
Lei
,
Y. G.
,
Tian
,
L. T.
, and
Li
,
R.
,
2009
, “
Three-Dimensional Numerical Study on Fin-and-Oval-Tube Heat Exchanger With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
29
(5–6), pp.
859
876
.
15.
Zeng
,
M.
,
Tang
,
L. H.
,
Lin
,
M.
, and
Wang
,
Q. W.
,
2010
, “
Optimization of Heat Exchangers With Vortex-Generator Fin by Taguchi Method
,”
Appl. Therm. Eng.
,
30
(13), pp.
1775
1783
.
16.
Allison
,
C. B.
, and
Dally
,
B. B.
,
2007
, “
Effect of a Delta-Winglet Vortex Pair on the Performance of a Tube-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
50
(25–26), pp.
5065
5072
.
17.
Elyyan
,
M. A.
,
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Investigation of Dimpled Fins for Heat Transfer Enhancement in Compact Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(11–12), pp.
2950
2966
.
18.
Turnow
,
J.
,
Kornev
,
N.
,
Zhdanov
,
V.
, and
Hassel
,
E.
,
2012
, “
Flow Structures and Heat Transfer on Dimples in a Staggered Arrangement
,”
Int. J. Heat Fluid Flow
,
35
, pp.
168
175
.
19.
Wei
,
X. Q.
,
Zhang
,
Y. H.
,
Hu
,
W. L.
, and
Wang
,
L. B.
,
2016
, “
The Fluid Flow and Heat Transfer Characteristics in the Channel Formed by Flat Tube and Dimpled Fin
,”
Int. J. Therm. Sci.
,
104
, pp.
86
100
.
20.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
,
2009
, “
A Novel Split-Dimple Interrupted Fin Configuration for Heat Transfer Augmentation
,”
Int. J. Heat Mass Transfer
,
52
(5–6), pp.
1561
1572
.
21.
Song
,
W. M.
,
Meng
,
J. A.
, and
Li
,
Z. X.
,
2010
, “
Analysis of Heat Transfer and Non Reversibility of Dimpled Fin in Air Cooler
,”
J. Tsinghua Univ.
,
50
, pp.
1104
1108
.
22.
Xia
,
H. H.
,
Tang
,
G. H.
,
Shi
,
Y.
, and
Tao
,
W. Q.
,
2014
, “
Simulation of Heat Transfer Enhancement by Longitudinal Vortex Generators in Dimple Heat Exchangers
,”
Energy
,
74
, pp.
27
36
.
23.
Kim
,
H. M.
,
Moon
,
M. A.
, and
Kim
,
K. Y.
,
2011
, “
Multi-Objective Optimization of a Cooling Channel With Staggered Elliptic Dimples
,”
Energy
,
36
(5), pp.
3419
3428
.
24.
Sangtarash
,
F.
, and
Shokuhmand
,
H.
,
2015
, “
Experimental and Numerical Investigation of the Heat Transfer Augmentation and Pressure Drop in Simple, Dimpled and Perforated Dimpled Louver Fin Banks With an In-Line or Staggered Arrangement
,”
Appl. Therm. Eng.
,
82
, pp.
194
205
.
25.
Song
,
K. W.
,
Wang
,
Y.
,
Zhang
,
Q.
,
Wang
,
L. B.
, and
Liu
,
Y. J.
,
2011
, “
Numerical Study of the Fin Efficiency and a Modified Fin Efficiency Formula for Flat Tube Bank Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
54
(11–12), pp.
2661
2672
.
26.
Kraus
,
A. D.
,
2003
, “
Heat Transfer
,”
Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Kraus
, eds.,
Wiley
,
Hoboken, NJ
, Chap. 11.
27.
Kylikof
,
U. A.
,
1988
,
The Cooling System of Diesel Locomotive
, Machine-Manufacturing Press,
Moscow, Russia
(in Russian).
28.
Gray
,
D. L.
, and
Webb
,
R. L.
,
1986
, “
Heat Transfer and Friction Correlations for Plate Fin-and-Tube Heat Exchangers Having Plain Fins
,”
Eighth International Heat Transfer Conference
, San Francisco, CA, Aug. 17–22, pp.
2745
2750
.
29.
Wang
,
C. C.
,
Chang
,
Y. J.
,
Hsieh
,
Y. C.
, and
Lin
,
Y. T.
,
1996
, “
Sensible Heat and Friction Characteristic of Plate Fin-and-Tube Heat Exchangers Having Plain Fins
,”
Int. J. Refrig.
,
19
(4), pp.
223
230
.
30.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Heat Transfer
,
104
(2), pp.
250
258
.
You do not currently have access to this content.