An extra high evaporating heat transfer coefficient can be obtained by thin-film evaporation. In the current investigation, a new detailed mathematical model is developed by considering the effects of bulk flow and interfacial thermal resistance on fluid flow and heat transfer in the thin-film region of an evaporating meniscus. In addition to the interfacial thermal resistance occurring at the liquid–vapor interface, the pressure difference between liquid and vapor is considered to the bulk flow effect. The results show that the bulk flow, which depends on the pressure difference between the interfacial pressure and vapor pressure, significantly affects thin-film profile, heat flux distribution, interfacial temperature, meniscus radius, mass flow rate, and average flow velocity in the evaporating thin-film region. While the interfacial thermal resistance occurring at the liquid–vapor interface affects fluid flow and heat transfer in the evaporating thin-film region, the bulk flow effect is more important than the interfacial thermal resistance.

References

1.
Potash
,
M.
, Jr., and
Wayner
,
P. C.
, Jr.,
1972
, “
Evaporation From a Two-Dimensional Extended Meniscus
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1851
1863
.
2.
Wayner
,
P. C.
,
Kao
,
Y. K.
, and
LaCroix
,
L. V.
,
1976
, “
The Interline Heat Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
487
492
.
3.
Moosman
,
S.
, and
Homsy
,
S. M.
,
1980
, “
Evaporating Menisci of Wetting Fluids
,”
J. Colloid Interface Sci.
,
73
(
1
), pp.
212
223
.
4.
Wayner
,
P. C.
,
1991
, “
The Effect of Interfacial Mass Transport on Flow in Thin Liquid Films
,”
Colloids Surf.
,
52
, pp.
71
84
.
5.
Schonberg
,
J. A.
, and
Wayner
,
P. C.
,
1992
, “
Analytical Solution for the Integral Contact Line Evaporative Heat Sink
,”
J. Thermophys. Heat Transfer
,
6
(
1
), pp.
128
134
.
6.
Stephan
,
P. C.
, and
Busse
,
C. A.
,
1992
, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
383
391
.
7.
Hallinan
,
K. P.
,
Kim
,
S. J.
, and
Chang
,
W. S.
,
1994
, “
Evaporation From an Extended Meniscus for Nonisothermal Interfacial Conditions
,”
J. Thermophys. Heat Transfer
,
8
(
4
), pp.
709
716
.
8.
DasGupta
,
S.
,
Schonberg
,
J. A.
, and
Wayner
,
P. C.
,
1993
, “
Investigation of an Evaporating Extended Meniscus Based on the Augmented Young-Laplace Equation
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
201
208
.
9.
Schonberg
,
J. A.
,
DasGupta
,
S.
, and
Wayner
,
P. C.
,
1995
, “
An Augmented Young-Laplace Model of an Evaporating Meniscus in a Microchannel With High Heat Flux
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
163
170
.
10.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2007
, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3933
3942
.
11.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
An Analytical Solution for the Total Heat Transfer in the Thin-Film Region of an Evaporating Meniscus
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6317
6322
.
12.
Ma
,
H. B.
, and
Peterson
,
G. P.
,
1997
, “
Temperature Variation and Heat Transfer in Triangular Grooves With an Evaporating Film
,”
J. Thermophys. Heat Transfer
,
11
(
1
), pp.
90
97
.
13.
Ma
,
H. B.
, and
Peterson
,
G. P.
,
1998
, “
Disjoining Pressure Effect on the Wetting Characteristics in a Capillary Tube
,”
Microscale Thermophys. Eng.
,
2
(
4
), pp.
283
297
.
14.
Yan
,
C. J.
, and
Ma
,
H. B.
,
2013
, “
Analytical Solutions of Heat Transfer and Film Thickness in Thin Film Evaporation
,”
ASME J. Heat Transfer
,
135
(
3
), p.
031501
.
15.
Ma
,
H. B.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
New York
.
16.
Ma
,
H. B.
,
Cheng
,
P.
, and
Borgmeyer
,
B.
,
2008
, “
Fluid Flow and Heat Transfer in the Evaporating Thin Film Region
,”
Microfluid. Nanofluid.
,
4
(
3
), pp.
237
243
.
17.
Fischer
,
S.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2015
, “
On the Development of a Thin Evaporating Liquid Film at a Receding Liquid/Vapor-Interface
,”
Int. J. Heat Mass Transfer
,
88
, pp.
346
356
.
You do not currently have access to this content.