A printed circuit heat exchanger (PCHE) was selected as the recuperator of supercritical carbon dioxide (S-CO2) Brayton cycle, and the segmental design method was employed to accommodate the rapid variations of properties of S-CO2. The local heat capacity rate ratio has crucial influences on the local thermal performance of PCHE, while having small influences on the frictional entropy generation. The heat transfer entropy generation is far larger than the frictional entropy generation, and the total entropy generation mainly depends on the heat transfer entropy generation. The axial conduction worsens the thermal performance of PCHE, which becomes more and more obvious with the increase of the thickness and thermal conductivity of plate. The evaluation criteria, material, and size of plate have to be selected carefully in the design of PCHE. The present work may provide a practical guidance on the design and optimization of PCHE when S-CO2 is employed as working fluid.

References

1.
Ahn
,
Y.
,
Lee
,
J.
,
Kim
,
S. G.
,
Lee
,
J. I.
,
Cha
,
J. E.
, and
Lee
,
S. W.
,
2015
, “
Design Consideration of Supercritical CO2 Power Cycle Integral Experiment Loop
,”
Energy
,
86
, pp.
115
127
.
2.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
3.
Lee
,
Y.
, and
Lee
,
J. I.
,
2014
, “
Structural Assessment of Intermediate Printed Circuit Heat Exchanger for Sodium-Cooled Fast Reactor With Supercritical CO2 Cycle
,”
Ann. Nucl. Energy
,
73
, pp.
84
95
.
4.
Padilla
,
R. V.
,
Soo Too
,
Y. C.
,
Benito
,
R.
, and
Stein
,
W.
,
2015
, “
Exergetic Analysis of Supercritical CO2 Brayton Cycles Integrated With Solar Central Receivers
,”
Appl. Energy
,
148
, pp.
348
365
.
5.
Wang
,
J. F.
,
Sun
,
Z. X.
,
Dai
,
Y. P.
, and
Ma
,
S. L.
,
2010
, “
Parametric Optimization Design for Supercritical CO2 Power Cycle Using Genetic Algorithm and Artificial Neural Network
,”
Appl. Energy
,
87
(
4
), pp.
1317
1324
.
6.
Pham
,
H. S.
,
Alpy
,
N.
,
Ferrasse
,
J. H.
,
Boutin
,
O.
,
Quenaut
,
J.
,
Tothill
,
M.
,
Haubensack
,
D.
, and
Saez
,
M.
,
2015
, “
Mapping of the Thermodynamic Performance of the Supercritical CO2 Cycle and Optimisation for a Small Modular Reactor and a Sodium-Cooled Fast Reactor
,”
Energy
,
87
, pp.
412
424
.
7.
Dyreby
,
J.
,
Klein
,
S.
,
Nellis
,
G.
, and
Reindl
,
D.
,
2014
, “
Design Considerations for Supercritical Carbon Dioxide Brayton Cycles With Recompression
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101701
.
8.
Oh
,
C. H.
,
Kim
,
E. S.
, and
Patterson
,
M.
, “
Design Option of Heat Exchanger for the Next Generation Nuclear Plant
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032903
.
9.
Xu
,
X. Y.
,
Ma
,
T.
,
Li
,
Z.
,
Zeng
,
M.
,
Chen
,
Y. T.
,
Huang
,
Y. P.
, and
Wang
,
Q. W.
,
2014
, “
Optimization of Fin Arrangement and Channel Configuration in an Airfoil Fin PCHE for Supercritical CO2 Cycle
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
867
875
.
10.
Li
,
Q.
,
Flamant
,
G.
,
Yuan
,
X.
,
Neveu
,
P.
, and
Luo
,
L.
,
2011
, “
Compact Heat Exchangers: A Review and Future Applications for a New Generation of High Temperature Solar Receivers
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4855
4875
.
11.
Khan
,
H. H.
,
Sharma
,
A.
,
Srivastava
,
A.
, and
Chaudhuri
,
P.
,
2015
, “
Thermal-Hydraulic Characteristics and Performance of 3D Wavy Channel Based Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
87
, pp.
519
528
.
12.
Southall
,
D.
,
LePierres
,
R.
, and
Dewson
,
S. J.
,
2008
, “
Design Considerations for Compact Heat Exchangers
,” Proceedings of the International Congress on Advances in Nuclear Power Plants -
ICAPP
, Anaheim, CA, June 8–12, pp. 1953–1968.
13.
Lee
,
S. M.
, and
Kim
,
K. Y.
,
2015
, “
Optimization of Printed Circuit Heat Exchanger Using Exergy Analysis
,”
ASME J. Heat Transfer
,
137
(
6
), p.
064501
.
14.
Bartel
,
N.
,
Chen
,
M.
,
Utgikar
, V
. P.
,
Sun
,
X.
,
Kim
,
I. H.
, and
Christensen
,
R.
,
2015
, “
Comparative Analysis of Compact Heat Exchangers for Application as the Intermediate Heat Exchanger for Advanced Nuclear Reactors
,”
Ann. Nucl. Energy
,
81
, pp.
143
149
.
15.
Kim
,
T. H.
,
Kwon
,
J. G.
,
Yoon
,
S. H.
,
Park
,
H. S.
,
Kim
,
M. H.
, and
Cha
,
J. E.
,
2015
, “
Numerical Analysis of Air-Foil Shaped Fin Performance in Printed Circuit Heat Exchanger in a Supercritical Carbon Dioxide Power Cycle
,”
Nucl. Eng. Des.
,
288
, pp.
110
118
.
16.
Ngo
,
T. L.
,
Kato
,
Y.
,
Nikitin
,
K.
, and
Ishizuka
,
T.
, “
Heat Transfer and Pressure Drop Correlations of Microchannel Heat Exchangers With S-Shaped and Zigzag Fins for Carbon Dioxide Cycles
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
560
570
.
17.
Ngo
,
T. L.
,
Kato
,
Y.
,
Nikitin
,
K.
, and
Tsuzuki
,
N.
,
2006
, “
New Printed Circuit Heat Exchanger With S-Shaped Fins for Hot Water Supplier
,”
Exp. Therm. Fluid Sci.
,
30
(
8
), pp.
811
819
.
18.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
19.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
20.
Nellis
,
G.
, and
Klein
,
S.
,
2008
,
Heat Transfer
,
Cambridge University Press
,
New York
.
21.
Guo
,
J. F.
,
2016
, “
Design Analysis of Supercritical Carbon Dioxide Recuperator
,”
Appl. Energy
,
164
, pp.
21
27
.
22.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
Massachusetts Institute of Technology Department of Nuclear Engineering
, Paper No. MIT-ANP-TR-100.
23.
Cheng
,
L.
,
Ribatski
,
G.
, and
Thome
,
J. R.
,
2008
, “
Analysis of Supercritical CO2 Cooling in Macro- and Micro-Channels
,”
Int. J. Refrig.
,
31
(
8
), pp.
1301
1316
.
24.
Hesselgreaves
,
J. E.
,
2001
,
Compact Heat Exchangers: Selection, Design and Operation
, Permagon Press, Oxford, UK.
25.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
Hoboken, NJ
.
26.
Hesselgreaves
,
J. E.
,
2000
, “
Rationalisation of Second Law Analysis of Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
43
(
22
), pp.
4189
4204
.
27.
Guo
,
J. F.
, and
Huai
,
X. L.
,
2013
, “
Optimization Design of Heat Exchanger in an Irreversible Regenerative Brayton Cycle System
,”
Appl. Therm. Eng.
,
58
, pp.
77
84
.
28.
Kroeger
,
P. G.
,
1967
, “
Performance Deterioration in High Effectiveness Heat Exchangers Due to Axial Heat Conduction Effects
,”
Adv. Cryog. Eng.
,
12
, pp.
363
372
.
29.
Barron
,
R. F.
,
1999
,
Cryogenic Heat Transfer
,
Taylor & Francis
,
Philadelphia, PA
.
30.
Baek
,
S.
,
Lee
,
C.
, and
Jeong
,
S.
,
2014
, “
Effect of Flow Maldistribution and Axial Conduction on Compact Microchannel Heat Exchanger
,”
Cryogenics
,
60
, pp.
49
61
.
31.
Guo
,
J. F.
,
Cheng
,
L.
, and
Xu
,
M.
,
2010
, “
Multi-Objective Optimization of Heat Exchanger Design by Entropy Generation Minimization
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081801
.
32.
Guo
,
J. F.
, and
Xu
,
M.
,
2012
, “
The Application of Entransy Dissipation Theory in Optimization Design of Heat Exchanger
,”
Appl. Therm. Eng.
,
36
, pp.
227
235
.
You do not currently have access to this content.