Immersion cooling strategies often employ surface enhancements to improve the pool boiling heat transfer performance. Sintered particle/powder coatings have been commonly used on smooth surfaces to reduce the wall superheat and increase the critical heat flux (CHF). However, there is no unified understanding of the role of coating characteristics on pool boiling heat transfer enhancement. The morphology and size of the particles affect the pore geometry, permeability, thermal conductivity, and other characteristics of the sintered coating. In turn, these characteristics impact the heat transfer coefficient and CHF during boiling. In this study, pool boiling of FC-72 is experimentally investigated using copper surfaces coated with a layer of sintered copper particles of irregular and spherical morphologies for a range of porosities (∼40–80%). Particles of the same effective diameter (90–106 μm) are sintered to yield identical coating thicknesses (∼4 particle diameters). The porous structure formed by sintering is characterized using microcomputed tomography (μ-CT) scanning to study the geometric and effective thermophysical properties of the coatings. The boiling performance of the porous coatings is analyzed. Coating characteristics that influence the boiling heat transfer coefficient and CHF are identified and their relative strength of dependence analyzed using regression analysis. Irregular particles yield higher heat transfer coefficients compared to spherical particles at similar porosity. The coating porosity, pore diameter, unit necking area, unit interfacial area, effective thermal conductivity, and effective permeability are observed to be the most critical coating properties affecting the boiling heat transfer coefficient and CHF.

References

1.
Milton
,
R. M.
,
1968
, “
Heat Exchange System
,” U.S. Patent No. 3384154.
2.
Liter
,
S. G.
, and
Kaviany
,
M.
,
2001
, “
Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4287
4311
.
3.
O’ Connor
,
J. P.
, and
You
,
S. M.
,
1995
, “
A Painting Technique to Enhance Pool Boiling Heat Transfer in Saturated FC-72
,”
ASME J. Heat Transfer
,
117
(
2
), p.
387
.
4.
You
,
S. M.
, and
Simon
,
T. W.
,
1992
, “
A Technique for Enhancing Boiling Heat Transfer With Application to Cooling of Electronic Equipment
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
15
(
5
), pp.
823
831
.
5.
El-Genk
,
M. S.
, and
Parker
,
J. L.
,
2005
, “
Enhanced Boiling of HFE-7100 Dielectric Liquid on Porous Graphite
,”
Energy Convers. Manage.
,
46
(
15–16
), pp.
2455
2481
.
6.
Parker
,
J. L.
, and
El-Genk
,
M. S.
,
2005
, “
Enhanced Saturation and Subcooled Boiling of FC-72 Dielectric Liquid
,”
Int. J. Heat Mass Transfer
,
48
(
18
), pp.
3736
3752
.
7.
Nishikawa
,
K.
,
Ito
,
T.
, and
Tanaka
,
K.
,
1979
, “
Enhanced Heat Transfer by Nucleate Boiling on a Sintered Metal Layer
,”
Heat Transfer—Jpn. Res.
,
8
(
2
), pp.
65
81
.
8.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2012
, “
Bubble Dynamics During Capillary-Fed Nucleate Boiling in Porous Media
,” 13th
IEEE
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, San Diego, CA, pp.
1114
1126
.
9.
Sarangi
,
S.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2015
, “
Effect of Particle Size on Surface-Coating Enhancement of Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
81
, pp.
103
113
.
10.
Furberg
,
R.
, and
Palm
,
B.
,
2011
, “
Boiling Heat Transfer on a Dendritic and Micro-Porous Surface in R134a and FC-72
,”
Appl. Therm. Eng.
,
31
(
15
), pp.
3595
3603
.
11.
O’ Hanley
,
H.
,
Coyle
,
C.
,
Buongiorno
,
J.
,
McKrell
,
T.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2013
, “
Separate Effects of Surface Roughness, Wettability, and Porosity on the Boiling Critical Heat Flux
,”
Appl. Phys. Lett.
,
103
(
2
), p.
024102
.
12.
Li
,
C.
, and
Peterson
,
G. P.
,
2008
, “
Experimental Studies on CHF of Pool Boiling on Horizontal Conductive Micro Porous Coated Surfaces
,”
AIP
Conference Proceedings
969
(
12
), Albuquerque, NM, Feb. 10–14, pp.
12
20
.
13.
Chi
,
W.
,
Sampath
,
S.
, and
Wang
,
H.
,
2006
, “
Ambient and High-Temperature Thermal Conductivity of Thermal Sprayed Coatings
,”
J. Therm. Spray Technol.
,
15
(
14
), pp.
773
778
.
14.
Dixon
,
A. G.
,
1988
, “
Wall and Particle-Shape Effects on Heat Transfer in Packed Beds
,”
Chem. Eng. Commun.
,
71
(
1
), pp.
217
237
.
15.
Deng
,
D.
,
Tang
,
Y.
,
Shao
,
H.
,
Zeng
,
J.
,
Zhou
,
W.
, and
Liang
,
D.
,
2014
, “
Effects of Structural Parameters on Flow Boiling Performance of Reentrant Porous Microchannels
,”
J. Miromech. Microeng.
,
24
(
6
), p.
065025
.
16.
Lin
,
Y. J.
, and
Hwang
,
K. S.
,
2009
, “
Effects of Powder Shape and Processing Parameters on Heat Dissipation of Heat Pipes With Sintered Porous Wicks
,”
Mater. Trans.
,
50
(
10
), pp.
2427
2434
.
17.
Bear
,
J.
,
1988
,
Dynamics of Fluids in Porous Media
,
Dover Publications
,
New York
.
18.
Vafai
,
K.
, ed.,
2015
,
Handbook of Porous Media
, 3rd, ed.,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
19.
Ranjan
,
R.
,
Murthy
,
J. Y.
,
Garimella
,
S. V.
, and
Vadakkan
,
U.
,
2011
, “
A Numerical Model for Transport in Flat Heat Pipes Considering Wick Microstructure Effects
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
153
168
.
20.
Bodla
,
K. K.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2013
, “
Advances in Fluid and Thermal Transport Property Analysis and Design of Sintered Porous Wick Microstructures
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061202
.
21.
Aziz
,
A. A.
,
Saury
,
C.
,
Xuan
,
V. B.
, and
Young
,
P.
,
2005
, “
On the Material Characterization of a Composite Using Micro CT Image Based Finite Element Modeling
,” Proc.
SPIE
6176, Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure V, p.
617605
.
22.
Watson
,
I. G.
,
Lee
,
P. D.
,
Dashwood
,
R. J.
, and
Young
,
P.
,
2006
, “
Simulation of the Mechanical Properties of an Aluminum Matrix Composite Using X-Ray Microtomography
,”
Metall. Mater. Trans. A
,
37
(
3
), pp.
551
558
.
23.
Tabor
,
G.
,
Young
,
P. G.
,
West
,
T. B.
, and
Benattayallah
,
A.
,
2007
, “
Mesh Construction From Medical Imaging for Multiphysics Simulation: Heat Transfer and Fluid Flow in Complex Geometries
,”
Eng. Appl. Comput. Fluid Mech.
,
1
(
2
), pp.
126
135
.
24.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2010
, “
Microtomography-Based Simulation of Transport Through Open-Cell Metal Foams
,”
Numer. Heat Transfer Part A
,
58
(
7
), pp.
527
544
.
25.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2012
, “
Direct Simulation of Thermal Transport Through Sintered Wick Microstructures
,”
ASME J. Heat Transfer
,
134
(
1
), p.
012602
.
26.
Lienhard
,
J. H.
, and
Dhir
,
V. K.
,
1973
, “
Hydrodynamic Prediction of Peak Pool-Boiling Heat Fluxes From Finite Bodies
,”
ASME J. Heat Transfer
,
95
(
2
), pp. 152–158.
27.
Davis
,
J. R.
,
2001
,
Copper and Copper Alloys (ASM Specialty Handbook)
,
ASM International
,
Materials Park, OH
, pp.
222
241
.
28.
Upadhyaya
,
G. S.
,
2002
,
Powder Metallurgy Technology
,
Cambridge International Science Publishing
,
Cambridge, UK
, pp.
18
21
.
29.
Zhao
,
Y. Y.
,
Fung
,
T.
,
Zhang
,
L. P.
, and
Zhang
,
F. L.
,
2005
, “
Lost Carbonate Sintering Process for Manufacturing Metal Foams
,”
Scr. Mater.
,
52
(
4
), pp.
295
298
.
30.
Webb
,
R. L.
,
1981
, “
Nucleate Boiling on Porous Coated Surfaces
,”
Heat Transfer Eng.
,
4
(
3–4
), pp.
71
82
.
31.
3M Corporation
,
2000
, “
Fluorinert Electronic Liquid FC-72 Product Information 98-0212-2308-0 (HB)
,”
3M Corporation, St. Paul, MN
.
32.
Simpleware
,
2009
, “
ScanIP, ScanFE, and ScanCAD Tutorial Guide for SIMPLEWARE 7.0
,” Simpleware Ltd., Exeter, UK.
33.
MathWorks
,
2014
, “
MATLAB 8.3
,” The MathWorks Inc., Natick, MA.
34.
Devore
,
J. L.
,
2009
,
Probability and Statistics for Engineering and the SciencesBrooks/Cole Cengage Learning
,
Brooks/Cole Cengage Learning
,
Belmont, CA
.
35.
Esbensen
,
K. H.
,
Guyot
,
D.
,
Westad
,
F.
, and
Lars
,
P.
,
2002
,
Multivariate Data Analysis—in Practice: An Introduction to Multivariate Data Analysis and Experimental Design
,
CAMO
,
Oslo, Norway
.
36.
McHale
,
J. P.
,
Garimella
,
S. V.
,
Fisher
,
T. S.
, and
Powell
,
G. A.
,
2011
, “
Pool Boiling Performance Comparison of Smooth and Sintered Copper Surfaces With and Without Carbon Nanotubes
,”
Nanoscale Microscale Thermophys. Eng.
,
15
(
3
), pp.
133
150
.
37.
Polezhaev
,
Y. V.
, and
Kovalev
,
S. A.
,
1990
, “
Modeling Heat Transfer With Boiling on Porous Structures
,”
Therm. Eng.
,
37
(
12
), pp.
617
620
.http://cat.inist.fr/?aModele=afficheN&cpsidt=5325848
38.
Childs
,
E. C.
, and
Collis-George
,
N.
,
1950
, “
The Permeability of Porous Materials
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
201
(
1066
), pp.
392
405
.
39.
Millington
,
R. J.
, and
Quirk
,
J. P.
,
1961
, “
Permeability of Porous Solids
,”
Trans. Faraday Soc.
,
57
, pp.
1200
1207
.
40.
Marshall
,
T. J.
,
1958
, “
A Relation Between Permeability and Size Distribution of Pores
,”
J. Soil Sci.
,
9
(
1
), pp.
1
8
.
41.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
,
33
(
10
), p.
3125
.
42.
Landauer
,
R.
,
1952
, “
The Electrical Resistance of Binary Metallic Mixtures
,”
J. Appl. Phys.
,
23
(
7
), p.
779
.
43.
Kirkpatrick
,
S.
,
1973
, “
Percolation and Conduction
,”
Rev. Mod. Phys.
,
45
(
4
), pp.
574
588
.
You do not currently have access to this content.