Composite material systems composed of a matrix of nanomaterials can achieve combinations of mechanical and thermophysical properties outside the range of traditional systems. The microstructure of the system dictates the rate, in which heat moves through the material. In this work, air/carbon nanofiber networks are studied to elucidate the system parameters influencing thermal transport. Thermal properties are measured with varying initial carbon fiber fill fraction, environment pressure, loading pressure, and heat treatment temperature (HTT) through a bidirectional modification of the 3ω technique. The nanostructure of the individual fibers is characterized with small angle X-ray scattering and Raman spectroscopy providing insight to individual fiber thermal conductivity. Measured thermal conductivity of the carbon nanofiber networks varied from 0.010 W/(m K) to 0.070 W/(m K). An understanding of the intrinsic properties of the individual fibers and the interactions of the two-phase composite is used to reconcile low measured thermal conductivities with predictive modeling. Accounting for fiber-to-fiber interactions and the nuanced changes in the composite as pressure is applied is necessary to successfully model thermal transport in system.

References

1.
Peebles
,
L.
, Jr.,
1995
,
Carbon Fibers: Formation, Structure, and Properties
,
CRC Press
,
Boca Raton, FL.
2.
Heremans
,
J.
,
Rahim
,
I.
, and
Dresselhaus
,
M. S.
,
1985
, “
Thermal Conductivity and Raman Spectra of Carbon Fibers
,”
Phys. Rev. B
,
32
(
10
), pp.
6742
6747
.
3.
Mayhew
,
E.
, and
Prakash
,
V.
,
2013
, “
Thermal Conductivity of Individual Carbon Nanofibers
,”
Carbon
,
62
, pp.
493
500
.
4.
Qiu
,
L.
,
Zheng
,
X.
,
Zhu
,
J.
,
Su
,
G.
, and
Tang
,
D.
,
2013
, “
The Effect of Grain Size on the Lattice Thermal Conductivity of an Individual Polyacrylonitrile-Based Carbon Fiber
,”
Carbon
,
51
, pp.
265
273
.
5.
Piraux
,
L.
,
Nysten
,
B.
,
Haquenne
,
A.
,
Issi
,
J.-P.
,
Dresselhaus
,
M.
, and
Endo
,
M.
,
1984
, “
The Temperature Variation of the Thermal Conductivity of Benzene-Derived Carbon Fibers
,”
Solid State Commun.
,
50
(
8
), pp.
697
700
.
6.
Chung
,
D.
,
2001
, “
Materials for Thermal Conduction
,”
Appl. Therm. Eng.
,
21
(
16
), pp.
1593
1605
.
7.
Atwater
,
M. A.
,
Mousavi
,
A. K.
,
Leseman
,
Z. C.
, and
Phillips
,
J.
,
2013
, “
Direct Synthesis and Characterization of a Nonwoven Structure Comprised of Carbon Nanofibers
,”
Carbon
,
57
, pp.
363
370
.
8.
Atwater
,
M. A.
,
Phillips
,
J.
,
Doorn
,
S. K.
,
Luhrs
,
C. C.
,
Fernández
,
Y.
,
Menéndez
,
J.
, and
Leseman
,
Z. C.
,
2009
, “
The Production of Carbon Nanofibers and Thin Films on Palladium Catalysts From Ethylene–Oxygen Mixtures
,”
Carbon
,
47
(
9
), pp.
2269
2280
.
9.
Tuinstra
,
F.
, and
Koenig
,
J. L.
,
1970
, “
Raman Spectrum of Graphite
,”
J. Chem. Phys.
,
53
(
3
), pp.
1126
1130
.
10.
Ferrari
,
A. C.
, and
Robertson
,
J.
,
2000
, “
Interpretation of Raman Spectra of Disordered and Amorphous Carbon
,”
Phys. Rev. B
,
61
(
20
), pp.
14095
14107
.
11.
Fourdeux
,
A.
,
Herinckx
,
C.
,
Perret
,
R.
, and
Ruland
,
W.
,
1970
, “
La structure des fibres de carbone
,”
Compt. Rend. Acad. Sci.,
25
(
1969
), pp.
1507
1600
.
12.
Gupta
,
A.
,
Harrison
,
I. R.
, and
Lahijani
,
J.
,
1994
, “
Small-Angle X-Ray Scattering in Carbon Fibers
,”
J. Appl. Crystallogr.
,
27
(
4
), pp.
627
636
.
13.
Shioya
,
M.
, and
Takaku
,
A.
,
1985
, “
Characterization of Microvoids in Carbon Fibers by Absolute Small-Angle X-Ray Measurements on a Fiber Bundle
,”
J. Appl. Phys.
,
58
(
11
), pp.
4074
4082
.
14.
Kaganer
,
M. G.
,
1969
,
Thermal Insulation in Cryogenic Engineering
,
Israel Program for Scientific Translations
,
Jerusalem, Israel
.
15.
Bauer
,
M. L.
, and
Norris
,
P. M.
,
2014
, “
General Bidirectional Thermal Characterization Via the 3ω Technique
,”
Rev. Sci. Instrum.
,
85
(
6
), p. 064903.
16.
Hu
,
X.
,
Padilla
,
A.
,
Xu
,
J.
,
Fisher
,
T.
, and
Goodson
,
K.
,
2006
, “
3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1109
1113
.
17.
Qiu
,
L.
,
Tang
,
D. W.
,
Zheng
,
X. H.
, and
Su
,
G. P.
,
2011
, “
The Freestanding Sensor-Based 3ω Technique for Measuring Thermal Conductivity of Solids: Principle and Examination
,”
Rev. Sci. Instrum.
,
82
(
4
), p.
045106
.
18.
Lee
,
S.-M.
, and
Cahill
,
D.
,
1997
, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
,
81
(
6
), pp.
2590
2595
.
19.
Kim
,
J. H.
,
Feldman
,
A.
, and
Novotny
,
D.
,
1999
, “
Application of the Three Omega Thermal Conductivity Measurement Method to a Film on a Substrate of Finite Thickness
,”
J. Appl. Phys.
,
86
(
7
), pp.
3959
3963
.
20.
Sun
,
W.-C.
,
Huang
,
M.-J.
,
Chien
,
H.-C.
,
Chang
,
T.-Y.
, and
Yao
,
D.-J.
,
2010
, “
A Novel Method for Measuring Thick Film Thermal Conductivity
,”
5th IEEE International Conference on Nano/Micro-Engineered and Molecular Systems
(
NEMS
), Xiamen, China, Jan. 20–23, pp.
1052
1056
.
21.
Feldman
,
A.
,
1999
, “
Algorithm for Solutions of the Thermal Diffusion Equation in a Stratified Medium With a Modulated Heating Source
,”
High Temp. High Pressures
,
31
(
3
), pp.
293
298
.
22.
Cahill
,
D.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
,
61
(
2
), pp.
802
808
.
23.
Schiffres
,
S. N.
,
Kim
,
K. H.
,
Hu
,
L.
,
McGaughey
,
A. J. H.
,
Islam
,
M. F.
, and
Malen
,
J. A.
,
2012
, “
Gas Diffusion, Energy Transport, and Thermal Accommodation in Single-Walled Carbon Nanotube Aerogels
,”
Adv. Funct. Mater.
,
22
(
24
), pp.
5251
5258
.
24.
Prasher
,
R. S.
,
Hu
,
X. J.
,
Chalopin
,
Y.
,
Mingo
,
N.
,
Lofgreen
,
K.
,
Volz
,
S.
,
Cleri
,
F.
, and
Keblinski
,
P.
,
2009
, “
Turning Carbon Nanotubes From Exceptional Heat Conductors Into Insulators
,”
Phys. Rev. Lett.
,
102
(
10
), p.
105901
.
25.
Bhattacharyya
,
R. K.
,
1980
,
Heat-Transfer Model for Fibrous Insulations, Thermal Insulation Performance
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
272
286
.
26.
General Electric Company, Research and Development Center
,
1984
,
Heat Transfer and Fluid Flow Data Books
,
Genium Publishing
,
Schenectady NY
.
27.
Raed
,
K.
, and
Gross
,
U.
,
2009
, “
Modeling of Influence of Gas Atmosphere and Pore-Size Distribution on the Effective Thermal Conductivity of Knudsen and Non-Knudsen Porous Materials
,”
Int. J. Thermophys.
,
30
(
4
), pp.
1343
1356
.
28.
Yasumoto
,
I.
,
1987
, “
Accommodation Coefficients of Helium, Neon, Argon, Hydrogen, and Deuterium on Graphitized Carbon
,”
J. Phys. Chem.
,
91
(
16
), pp.
4298
4301
.
29.
Hu
,
L.
, and
McGaughey
,
A. J. H.
,
2013
, “
Energy Accommodation Between Noble Gases and Carbon Nanotubes
,”
J. Phys. Chem. C
,
117
(
37
), pp.
18804
18808
.
30.
Amdur
,
I.
, and
Guildner
,
L. A.
,
1957
, “
Thermal Accommodation Coefficients on Gas-Covered Tungsten, Nickel and Platinum
,”
J. Am. Chem. Soc.
,
79
(
2
), pp.
311
315
.
31.
Rader
,
D. J.
,
Grasser
,
T. W.
,
Castaneda
,
J. N.
,
Trott
,
W. M.
, and
Torczynski
,
J. R.
,
2005
, “
Measurements of Thermal Accommodation Coefficients
,” U.S. Department of Energy, Springfield, VA,
Report No. SAND2005-6084
.
32.
Fletcher
,
L.
, and
White
,
F.
,
1984
,
Heat Transfer and Fluid Flow Data Books
,
Genium Publishing
,
Schnectady, NY
.
33.
Fricke
,
H.
,
1924
, “
A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems—I: The Electric Conductivity of a Suspension of Homogeneous Spheroids
,”
Phys. Rev.
,
24
(
5
), pp.
575
587
.
34.
Stark
,
C.
, and
Fricke
,
J.
,
1993
, “
Improved Heat-Transfer Models for Fibrous Insulations
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
617
625
.
35.
Evans
,
W. J.
,
Shen
,
M.
, and
Keblinski
,
P.
,
2012
, “
Inter-Tube Thermal Conductance in Carbon Nanotubes Arrays and Bundles: Effects of Contact Area and Pressure
,”
Appl. Phys. Lett.
,
100
(
26
), p.
261908
.
36.
Yang
,
J.
,
Waltermire
,
S.
,
Chen
,
Y.
,
Zinn
,
A. A.
,
Xu
,
T. T.
, and
Li
,
D.
,
2010
, “
Contact Thermal Resistance Between Individual Multiwall Carbon Nanotubes
,”
Appl. Phys. Lett.
,
96
(
2
), p. 023109.
You do not currently have access to this content.