In this paper, a figure of merit for the cooling capacity (FOMq) of phase change materials (PCMs) is defined from the analytical solution of the two-phase Neumann–Stefan problem of melting of a semi-infinite material with a fixed temperature boundary condition (BC). This figure of merit is a function of the thermophysical properties of a PCM and is proportional to the heat transfer across the interface with the surrounding medium in this general case. Thus, it has important implications for design and optimization of PCMs for high heat-flux thermal management applications. FOMq of example low melting point metals are presented which exceed those in common nonmetallic PCMs over the same temperature range by over an order of magnitude.

References

1.
Economou
,
J. T.
,
2013
, “
Electrification of Aircraft Systems: Power and Control
,”
Proc. Inst. Mech. Eng., Part G
,
227
(
4
), p.
577
.
2.
Chan
,
C.
,
2002
, “
The State of the Art of Electric and Hybrid Vehicles
,”
Proc. IEEE
,
90
(
2
), pp.
247
275
.
3.
Jankowski
,
N. R.
, and
Mccluskey
,
F. P.
,
2014
, “
A Review of Phase Change Materials for Vehicle Component Thermal Buffering
,”
Appl. Energy
,
113
(
C
), pp.
1525
1561
.
4.
Raghavan
,
A.
,
Luo
,
Y.
,
Chandawalla
,
A.
,
Papaefthymiou
,
M.
,
Pipe
,
K. P.
,
Wenisch
,
T. F.
, and
Martin
,
M. M.
,
2013
, “
Designing for Responsiveness With Computational Sprinting
,”
IEEE Micro
,
33
(
3
), pp.
8
15
.
5.
Raghavan
,
A.
,
Emurian
,
L.
,
Shao
,
L.
,
Papaefthymiou
,
M.
,
Pipe
,
K. P.
,
Wenisch
,
T. F.
, and
Martin
,
M. M.
,
2013
, “
Computational Sprinting on a Hardware/Software Testbed
,”
ACM SIGPLAN Not.
,
48
(
4
), pp.
155
166
.
6.
Shao
,
L.
,
Raghavan
,
A.
,
Emurian
,
L.
,
Papaefthymiou
,
M. C.
,
Wenisch
,
T. F.
,
Martin
,
M. M.
, and
Pipe
,
K. P.
,
2014
, “
On-Chip Phase Change Heat Sinks Designed for Computational Sprinting
,”
IEEE 30th Annual
SEMI-THERM
, San Jose, CA, Mar. 9–13, pp.
56
57
.
7.
Weinstein
,
R. D.
,
Kopec
,
T. C.
,
Fleischer
,
A. S.
,
D'addio
,
E.
, and
Bessel
,
C. A.
,
2008
, “
The Experimental Exploration of Embedding Phase Change Materials With Graphite Nanofibers for the Thermal Management of Electronics
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042405
.
8.
Mesalhy
,
O.
,
Lafdi
,
K.
,
Elgafy
,
A.
, and
Bowman
,
K.
,
2005
, “
Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix
,”
Energy Convers. Manage.
,
46
(
6
), pp.
847
867
.
9.
Hu
,
X.
, and
Patnaik
,
S.
,
2012
, “
Numerical Simulations of Cyclic Melting and Freezing of Phase Change Material in Micro-Foam
,”
AIAA
Paper No. 2012-3183.
10.
Ge
,
H.
,
Li
,
H.
,
Mei
,
S.
, and
Liu
,
J.
,
2013
, “
Low Melting Point Liquid Metal as a New Class of Phase Change Material: An Emerging Frontier in Energy Area
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
331
346
.
11.
Fukuoka
,
Y.
, and
Ishizuka
,
M.
,
1991
, “
Thermal Analysis of a New High Density Package Cooling Technology Using Low Melting Point Alloys
,”
Jpn. J. Appl. Phys.
,
30
(
6R
), pp.
1313
1319
.
12.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Kang
,
S. S.
,
2005
, “
A Novel Hybrid Heat Sink Using Phase Change Materials for Transient Thermal Management of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
281
289
.
13.
Yoo
,
D.-W.
, and
Joshi
,
Y. K.
,
2004
, “
Energy Efficient Thermal Management of Electronic Components Using Solid-Liquid Phase Change Materials
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
641
649
.
14.
Evans
,
A.
,
He
,
M.
,
Hutchinson
,
J.
, and
Shaw
,
M.
,
2001
, “
Temperature Distribution in Advanced Power Electronics Systems and the Effect of Phase Change Materials on Temperature Suppression During Power Pulses
,”
ASME J. Electron. Packag.
,
123
(
3
), pp.
211
217
.
15.
Lu
,
T.
,
2000
, “
Thermal Management of High Power Electronics With Phase Change Cooling
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2245
2256
.
16.
Clabes
,
J.
,
Friedrich
,
J.
,
Sweet
,
M.
,
Dilullo
,
J.
,
Chu
,
S.
,
Plass
,
D.
,
Dawson
,
J.
,
Muench
,
P.
,
Powell
,
L.
, and
Floyd
,
M.
,
2004
, “
Design and Implementation of the Power5™ Microprocessor
,”
IEEE International Solid-State Circuits Conference
(
DAC '04
), San Francisco, CA, pp.
56
57
.
17.
Choi
,
J.
,
Cher
,
C.-Y.
,
Franke
,
H.
,
Hamann
,
H.
,
Weger
,
A.
, and
Bose
,
P.
,
2007
, “
Thermal-Aware Task Scheduling at the System Software Level
,”
International Symposium on Low Power Electronics and Design
(
ISLPED
), Portland, OR, pp.
213
218
.
18.
Stefan
,
J.
,
1891
, “
Über Die Theorie Der Eisbildung, Insbesondere Über Die Eisbildung Im Polarmeere
,”
Ann. Phys.
,
278
(
2
), pp.
269
286
.
19.
Weber
,
H.
, and
Riemann
,
B.
,
1919
,
Die Partiellen Differential-Gleichungen Der Mathematischen Physik
,
Vieweg and Son
,
Braunschweig, Germany
.
20.
Hu
,
H.
, and
Argyropoulos
,
S. A.
,
1996
, “
Mathematical Modelling of Solidification and Melting: A Review
,”
Modell. Simul. Mater. Sci. Eng.
,
4
(
4
), pp.
371
396
.
21.
Carslaw
,
H.
, and
Jaeger
,
J.
,
1959
,
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford, UK
.
22.
Hale
,
D. V.
,
Hoover
,
M. J.
, and
O'Neill
,
M. J.
,
1971
, “
Phase Change Materials Handbook
,” Lockheed Missiles and Space Co., Huntsville, AL, Report No. NASA CR-61363.
23.
Mehling
,
H.
, and
Cabeza
,
L. F.
,
2008
,
Heat and Cold Storage With PCM
,
Springer
,
Berlin
.
24.
Tong
,
B.
,
Tan
,
Z.
,
Zhang
,
J.
, and
Wang
,
S.
,
2009
, “
Thermodynamic Investigation of Several Natural Polyols
,”
J. Therm. Anal. Calorim.
,
95
(
2
), pp.
469
475
.
25.
Shamberger
,
P. J.
, and
Reid
,
T.
,
2013
, “
Thermophysical Properties of Potassium Fluoride Tetrahydrate From (243 to 348) K
,”
J. Chem. Eng. Data
,
58
(
2
), pp.
294
300
.
26.
Shamberger
,
P. J.
, and
Reid
,
T.
,
2012
, “
Thermophysical Properties of Lithium Nitrate Trihydrate From (253 to 353) K
,”
J. Chem. Eng. Data
,
57
(
5
), pp.
1404
1411
.
27.
Duggin
,
M.
,
1969
, “
The Thermal Conductivity of Liquid Gallium
,”
Phys. Lett. A
,
29
(
8
), pp.
470
471
.
28.
Archer
,
D. G.
,
2002
, “
The Enthalpy of Fusion of Gallium
,”
J. Chem. Eng. Data
,
47
(
2
), pp.
304
309
.
29.
Archer
,
D. G.
, and
Rudtsch
,
S.
,
2003
, “
Enthalpy of Fusion of Indium: A Certified Reference Material for Differential Scanning Calorimetry
,”
J. Chem. Eng. Data
,
48
(
5
), pp.
1157
1163
.
30.
Duggin
,
M.
,
1972
, “
The Thermal Conductivities of Liquid Lead and Indium
,”
J. Phys. F: Met. Phys.
,
2
(
3
), pp.
433
–440.
31.
Grønvold
,
F.
,
1978
, “
Heat Capacity of Indium From 300 to 1000 K
,”
J. Therm. Anal. Calorim.
,
13
(
3
), pp.
419
428
.
32.
Alchagirov
,
B.
,
Mozgovoi
,
A.
, and
Khatsukov
,
A.
,
2004
, “
The Density of Molten Indium at Temperatures up to 600 K
,”
High Temp.
,
42
(
6
), pp.
1003
1005
.
33.
Alchagirov
,
B.
, and
Chochaeva
,
A.
,
2000
, “
Temperature Dependence of the Density of Liquid Tin
,”
High Temp.
,
38
(
1
), pp.
44
48
.
34.
Grønvold
,
F.
,
1993
, “
Enthalpy of Fusion and Temperature of Fusion of Indium, and Redetermination of the Enthalpy of Fusion of Tin
,”
J. Chem. Thermodyn.
,
25
(
9
), pp.
1133
1144
.
35.
Chen
,
H.
, and
Turnbull
,
D.
,
1968
, “
The Specific Heat of Tin and Gallium in Their Stable and Undercooled Pure Liquid States
,”
Acta Metall.
,
16
(
3
), pp.
369
373
.
36.
Peralta-Martinez
,
M.
, and
Wakeham
,
W.
,
2001
, “
Thermal Conductivity of Liquid Tin and Indium
,”
Int. J. Thermophys.
,
22
(
2
), pp.
395
403
.
You do not currently have access to this content.