The present study aimed to investigate the effect of an unsteady wake on the heat transfer for the endwall surface of a linear of cascade turbine blade. A naphthalene sublimation method was implemented to obtain the detailed heat/mass transfer distributions on the endwall surface. Tests were conducted on a five-passage linear cascade in a low-speed wind tunnel. The effects of unsteady wakes were simulated in the facility by a wake generator consisting of circular rods that were traversed across the inlet flow. The test conditions were fixed at a Reynolds number of 70,000 based on the inlet velocity and chord length. The flow coefficients were varied from 1.3 to 4.2 and the range of Strouhal number was 0.1–0.3. The results showed that the heat transfer distributions differed between steady and unsteady cases. The overall heat transfer for the unsteady cases was higher, and the heat transfer was enhanced with increasing the Strouhal number due to the resulting thin boundary layer and high turbulence intensity. Therefore, a cooling system for the endwall of a rotor should focus on reducing the high temperatures on the endwall surface induced by the unsteady wakes.

References

1.
Sieverding
,
C. H.
,
1984
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
248
257
.10.1115/1.3239704
2.
Harrison
,
S.
,
1989
, “
Secondary Loss Generation in a Linear Cascade of High Turning Turbine Blades
,” ASME Paper 89-GT-47.
3.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomachinery
,
118
, pp.
613
621
.10.1115/1.2840916
4.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomachinery
,
119
, pp.
1
8
.10.1115/1.2841006
5.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
, pp.
524
529
.10.1115/1.3450239
6.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
,
102
, pp.
257
267
.10.1115/1.3230246
7.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
, pp.
862
869
.10.1115/1.3250586
8.
Boyle
,
R. J.
, and
Russell
,
L. M.
,
1989
, “
Experimental Determination of Stator Endwall Heat Transfer
,” ASME Paper 89-GT-219.
9.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomachinery
,
112
, pp.
488
496
.10.1115/1.2927684
10.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Choi
,
J. H.
,
2001
, “
Heat/Mass Transfer Characteristics on Turbine Shroud With Blade Tip Clearance
,”
Heat Transfer Gas Turbine Syst., Ann. N.Y. Acad. Sci.
,
934
, pp.
281
288
.10.1111/j.1749-6632.2001.tb05861.x
11.
Hodson
,
H. P.
,
1985
, “
A Blade-to-Blade Prediction of a Wake-Generated Unsteady Flow
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
337
344
.10.1115/1.3239725
12.
Hodson
,
H. P.
,
1985
, “
Measurements of Wake-Generated Unsteadiness in the Rotor Passages of Axial Flow Turbines
,”
ASME J. Eng. Power
,
107
, pp.
467
476
.10.1115/1.3239751
13.
Liu
,
X.
, and
Rodi
,
W.
,
1994
, “
Velocity Measurements of Wake-Induced Unsteady Flow in a Linear Turbine Cascade
,”
Exp. Fluids
,
17
, pp.
45
58
.10.1007/BF02412803
14.
Han
,
J. C.
,
Zhang
,
L.
, and
Ou
,
S.
,
1993
, “
Influence of Unsteady Wake on Heat Transfer Coefficient From a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
115
, pp.
904
911
.10.1115/1.2911386
15.
Liu
,
X.
, and
Rodi
,
W.
,
1994
, “
Surface Pressure and Heat Transfer Measurements in a Turbine Cascade With Unsteady Oncoming Wakes
,”
Exp. Fluids
,
17
, pp.
171
178
.10.1007/BF00190914
16.
Rhee
,
D. H
, and
Cho
,
H. H.
,
2008
, “
Effect of Vane/Blade Relative Position on Heat Transfer Characteristics in a Stationary Turbine Blade: Part 1—Tip and Shroud
,”
J. Therm. Sci.
,
47
(
11
), pp.
1528
1543
.10.1016/j.ijthermalsci.2007.12.006
17.
Rhee
,
D. H.
, and
Cho
,
H. H.
,
2008
, “
Effect of Vane/Blade Relative Position on Heat Transfer Characteristics in a Stationary Turbine Blade: Part 2—Blade Surface
,”
J. Therm. Sci.
,
47
(
11
), pp.
1544
1554
.10.1016/j.ijthermalsci.2007.12.007
18.
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2005
, “
Numerical Simulation of Unsteady Wake/Blade Interactions in Low-Pressure Turbine Flows Using and Intermittency Transport Equation
,”
ASME J. Turbomachinery
,
127
, pp.
431
444
.10.1115/1.1860375
19.
Rodi
,
W.
,
2006
, “
DNS and LES of Some Engineering Flows
,”
Fluid Dyn. Res.
,
38
, pp.
145
173
.10.1016/j.fluiddyn.2004.11.003
20.
Ibrahim
,
M. B.
,
Vinci
,
S.
,
Kartuzova
,
O.
, and
Volino
,
R. J.
,
2012
, “
CFD Simulations of Unsteady Wakes on a Highly Loaded Low Pressure Turbine Airfoil (L1A)
,” ASME Paper GT2012-69770.
21.
Park
,
J. S.
,
Jung
,
E. Y.
,
Lee
,
D. H.
,
Kim
,
K. M.
,
Kim
,
B. S.
,
Chang
,
B. M.
, and
Cho
,
H. H.
,
2013
, “
Effects of an Unsteady Wake on Heat Transfer of Endwall Surface in the Linear Cascade
,” ASME Paper HT2013-17317.
22.
O'Brien
,
J. E.
, and
Capp
,
S. P.
,
1989
, “
Two-Component Phase-Averaged Turbulence Statistics Downstream of a Rotating Spoked-Wheel Wake Generator
,”
ASME J. Turbomachinery
,
111
, pp.
475
482
.10.1115/1.3262296
23.
Ambrose
,
D.
,
Lawrenson
,
I. J.
, and
Sparke
,
C. H. S.
,
1975
, “
The Vapor Pressure of Naphthalene
,”
J. Chem. Thermodyn.
,
7
, pp.
1173
1176
.10.1016/0021-9614(75)90038-5
24.
Goldstein
,
R. J.
, and
Cho
,
H. H.
,
1995
, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
,
10
, pp.
416
434
.10.1016/0894-1777(94)00071-F
25.
Eckert
,
E. R. G.
, and
Drake.
R. M. J.
,
1987
,
Analysis of Heat and Mass Transfer
,
Hemisphere
,
New York
, pp.
306
383
.
26.
Abernethy
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
You do not currently have access to this content.