During nucleate flow boiling, the bubble dynamics affect the liquid flow field and the corresponding heat transfer process through several distinct mechanisms. At the microscale, this effect is different than at the macro scale partly because the bubble dimensions are comparable to the characteristic length scale of the channel. Since the process involves several mechanisms, an attempt to isolate and study them independently from one another is desired in order to extend knowledge. To remove the evaporation effect from the heat transfer process, noncondensable gas bubbles were introduced upstream of a 1 mm × 1 mm heater into a 220 μm deep and a 1.5 mm wide microchannel and the heat transfer coefficient was measured and compared to single-phase liquid flow. High speed imaging and micro particle image velocimetry (μ-PIV) measurements were used to elucidate the bubble dynamics and the liquid velocity field. This, in turn, revealed mechanisms controlling the heat transfer process. Acceleration and deceleration of the liquid flow due to the presence of bubbles were found to be the main parameters controlling the heat transfer process.

References

1.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1996
,
Convective Boiling and Condensation
,
Oxford University Press
,
New York
.
2.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2010
, “
Flow Boiling Heat Transfer on Micro Pin Fins Entrenched in a Microchannel
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041007
.10.1115/1.4000878
3.
Basu
N.
,
Warrier
G. R.
, and
Dhir
V. K.
,
2005
, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part 1—Model Development
,”
ASME J. Heat Transfer
,
127
(
2
), pp.
131
140
.10.1115/1.1842784
4.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
142
154
.10.1016/j.ijmultiphaseflow.2008.10.004
5.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
J. Heat Transfer
,
126
(
1
), pp.
8
16
.10.1115/1.1643090
6.
Kim
,
J.
,
2009
, “
Review of Nucleate Pool Boiling Bubble Heat Transfer Mechanisms
,”
Int. J. Multiphase Flow
,
35
(
12
), pp.
1067
1076
.10.1016/j.ijmultiphaseflow.2009.07.008
7.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2009
, “
Flow Boiling of Coolant (HFE-7000) Inside Structured and Plain Wall Microchannels
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121011
.10.1115/1.3220674
8.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2007
, “
Local Measurement of Flow Boiling in Structured Surface Microchannels
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4513
4526
.10.1016/j.ijheatmasstransfer.2007.03.047
9.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2010
, “
Flow Boiling on Micro Pin Fins Entrenched Inside a Microchannel—Flow Patterns and Bubble Departure Diameter and Bubble Frequency
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041002
.10.1115/1.2994718
10.
Betz
,
A. R.
, and
Attinger
,
D.
,
2010
, “
Can Segmented Flow Enhance Heat Transfer in Microchannel Heat Sinks?
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3683
3691
.10.1016/j.ijheatmasstransfer.2010.04.016
11.
Asthana
,
A.
,
Zinovik
,
I.
,
Weinmueller
,
C.
, and
Poulikakos
,
D.
,
2011
, “
Significant Nusselt Number Increase in Microchannels With a Segmented Flow of Two Immiscible Liquids: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1456
1464
.10.1016/j.ijheatmasstransfer.2010.11.048
12.
Han
,
Y.
, and
Shikazono
,
N.
,
2011
, “
Stabilization of Flow Boiling in a Micro Tube With Air Injection
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1255
1264
.10.1016/j.expthermflusci.2011.04.013
13.
Xu
,
J.
,
Liu
,
G.
,
Zhang
,
W.
,
Li
,
Q.
, and
Wang
,
B.
,
2009
, “
Seed Bubbles Stabilize Flow and Heat Transfer in Parallel Microchannels
,”
Int. J. Multiphase Flow
,
35
(
8
), pp.
773
790
.10.1016/j.ijmultiphaseflow.2009.03.008
14.
Browne
,
E. A.
,
Michna
,
G. J.
,
Jensen
,
M. K.
, and
Peles
,
Y.
,
2010
, “
Experimental Investigation of Single-Phase Microjet Array Heat Transfer
,”
ASME J. Heat Transfer
,
132
, p.
041013
.10.1115/1.4000888
15.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
(
1
), pp.
3
8
.
16.
Elcock
,
D.
,
Honkanen
,
M.
,
Kuo
,
C.
,
Amitay
,
M.
, and
Peles
,
Y.
,
2011
, “
Bubble Dynamics and Interactions With a Pair of Micro Pillars in Tandem
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
440
452
.10.1016/j.ijmultiphaseflow.2010.12.004
17.
Elcock
,
D.
,
Jung
,
J.
,
Kuo
,
C.-J.
,
Amitay
,
M.
, and
Peles
Y.
,
2011
, “
Interaction of a Liquid Flow Around a Micropillar With a Gas Jet
,”
Phys. Fluids
,
23
(
12
), p.
122001
.10.1063/1.3662436
18.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts, Advances in Heat Transfer
, (Supplement 1),
Academic Press
,
New York
.
19.
Han
,
Y.
, and
Shikazono
,
N.
,
2009
, “
Measurement of Liquid Film Thickness in Micro Square Channel
,”
Int. J. Multiphase Flow
,
35
(
10
), pp.
896
903
.10.1016/j.ijmultiphaseflow.2009.06.006
20.
Bretherton
,
F. P.
,
1961
, “
The Motion of Long Bubbles in Tubes
,”
J. Fluid Mech.
,
10
, pp.
166
188
.10.1017/S0022112061000160
You do not currently have access to this content.